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Preface

Homogeneous catalysis using transition metal complexes is an area of research
that has grown enormously in recent years. Many amazing catalytic discoveries
have been reported by researchers both in industry and in academia. Reactions
that were thought to be well understood and optimised have now been
revolutionized with completely new catalysts and unprecedented product
selectivities. Our knowledge in this area has increased accordingly, but much of
this information 1s still only to be found in the original literature. While the
field of homogeneous catalysis is becoming more and more important to
organic chemists, industrial chemists, and academia, until now there has been
no book available that gives real insight in the many new and old reactions of
importance. This book aims to provide a balanced overview of the vibrant and
growing field of homogeneous catalysis to chemists trained in different
disciplines, and to graduate students who take catalysis as a main or secondary
subject.

The book presents a review of sixteen important topics in modern
homogeneous catalysis. While the focus is on concepts, many key industrial
processes and applications that are important in the laboratory synthesis of
organic chemicals are used as real world examples. After an introduction to
the field, the elementary steps needed for an understanding of the
mechanistic aspects of the various catalytic reactions have been described.
Chapter 3 gives the basics of kinetics, thus stressing that kinetics, so often
neglected, 1s actually a key part of the foundation of catalysis.

The approach in the catalysis chapters has been to introduce the key concepts
and important examples, rather than to present a complete listing of catalysts,
ligands, and processes, which would anyway be impossible within this single
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volume. Readers requiring this level of depth and completeness on a given
reaction are pointed (through references) toward many dedicated books that
present the individual topics with all the details in a comprehensive way. The
literature chosen is a very personal choice of what I thought crucial to the
development of an understanding of a given reaction. A few chapters remain
descriptive in the absence of better studies, but they have been included
because of their importance, and in order to cover the full range of topics such
as fine chemicals, bulk chemicals, polymers, high-tech polymers,
pharmaceuticals, reaction types, etc. For a few reactions, I have included the
process schemes, environmental concerns and safety aspects, in an attempt to
encourage catalyst researchers to think about these topics at an early stage of
their projects and communicate with chemical engineers, customers and the
end-users.

Astonishment and awe signalled the early chapters of modern day science; a
deeper understanding is not the end of this era of marvel and amazement, but
simply the next exciting chapter.
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Chapter 1

INTRODUCTION
What it is all about

1.1 Catalysis

Catalysis plays a key role in the industrial production of liquid fuels and
bulk chemicals. More recently the producers of fine chemicals have started to
utilise catalytic conversions in their processes. For oil processes heterogeneous
catalysts are preferred with one exception, the alkylation reaction for which
liquid acids are being used. For the conversion of petrochemicals both
homogeneous and heterogeneous catalysts are used. The number of
homogeneously catalysed processes has been steadily growing in the eighties
and nineties. For fine chemicals a variety of sophisticated homogeneous
catalysts is being used. In the laboratory a wide range of catalytic reactions has
become indispensable.

The term catalysis was coined by Berzelius over 150 years ago when he had
noticed changes in substances when they were brought in contact with small
amounts of certain species called "ferments". Many years later in 1895 Ostwald
came up with the definition that we use until today: 4 catalyst is a substance
that changes the rate of a chemical reaction without itself appearing into the
products. This means that according to Ostwald a catalyst can also slow down a
reaction! The definition used today reads as follows: 4 catalyst is a substance
which increases the rate ai which a chemical reaction approaches equilibrium
without becoming itself permanently involved.

The "catalyst" may be added to the reactants in a different form, the catalyst
precursor, which has to be brought into an active form ("activated"). During the
catalytic cycle the catalyst may be present in several intermediate forms when
we look more closely at the molecular level. An active catalyst will pass a
number of times through this cycle of states; in this sense the catalyst remains
unaltered. The number of times that a catalyst goes through this cycle is the
turnover number. The turnover number (TON) is the total number of substrate

1



2 Chapter 1

molecules that a catalyst converts into product molecules. The turnover
frequency (TOF) is the turnover number in a certain period of time. Substrates
are present in larger amounts than the catalyst; when we report on catalytic
reactions the ratio of substrate to catalyst is an important figure.

An inhibitor is a substance that retards a reaction. An inhibitor is also
present in "catalytic" or sub-stoichiometric amounts. In a radical chain reaction
an inhibitor may be a radical scavenger that interrupts the chain. In a metal
catalysed reaction an inhibitor could be a substance that adsorbs onto the metal
making it less active or blocking the site for substrate co-ordination. We also
talk about a poison, a substance that stops the catalytic reaction. A poison may
kill the catalyst. The catalyst dies, we say, after which it has to be regenerated
wherever possible. We will often see the word co-catalyst, a substance that
forms part of the catalyst itself or plays another role somewhere in the catalytic
cycle. We inherited a florid language from our predecessors to whom catalysis
was black magic. Naturally, these words are rather imprecise for a description
of catalysis at the molecular level.

Organometallic catalysts consist of a central metal surrounded by organic
(and inorganic) ligands. Both the metal and the large variety of ligands
determine the properties of the catalyst. The success of organometallic catalysts
lies in the relative ease of catalyst modification by changing the ligand
environment. Crucial properties to be influenced are the rate of the reaction and
the selectivity to certain products.

The following types of selectivity can be distinguished in a chemical
reaction:

chemoselectivity, when two chemically different functionalities are present
such as an alkene and an aldehyde in the example in Figure 1.1 which both can
be hydrogenated, the chemoselectivity tells us whether the aldehyde or the
alkene is being hydrogenated; or when more than one reaction can take place
for the same substrate e.g. hydrogenation or hydroformylation;

regioselectivity, as in the example shown for the hydroformylation reaction,
the formyl group can be attached to either the primary, terminal carbon atom or
the secondary, internal carbon atom, which leads respectively to the lincar and
the branched product; ;

diastereoselectivity, the substrate contains a stereogenic centre and this
together with the catalyst can direct the addition of dihydrogen in the example
to give two diastereomers, the selectivity for either one is called the
diastereoselectivity;

enantioselectivity, the substrate is achiral in this instance, but the enantio-
pure or enantio-enriched catalyst may give rise to the formation of one specific
product enantiomer.
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Figure 1.1. Selectivity of chemical conversions

High selectivity is a means

1) toreduce waste,

2) to reduce the work-up equipment of a plant, and

3) to ensure a more effective use of the feedstocks.

Rate enhancements of many orders of magnitude can be obtained in
catalysis, often by very subtle changes. Rates represent a cost factor, higher
rates allowing higher space-time yields (kg of product per time and reactor
volume) and hence smaller reaction vessels. Higher rates and higher overall
catalyst yields (i.e. mass of product per unit mass of catalyst) reduce the
incremental contribution of catalyst costs per unit mass of product generated: In
the case of metallocene catalysts for olefin polymerisation for example
(Chapter 10) the higher catalyst cost contribution of these catalysts (around
$0.04 per kg of polyolefin) has significantly reduced their impact and ability to
displace Ziegler-Natta catalysts (where the catalyst cost contribution is only
$0.006-0.011 per kg of polymer).

Kinetics are an important part of catalysis; after all, catalysis is concerned
with accelerating reactions. In order to describe the effectiveness of a catalyst
one would like to determine the acceleration that has been achieved in the
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catalysed reaction as compared with the non-catalysed reaction. This is an
impossibility. Suppose we have a bimolecular reaction of species A and B with
a rate of product P formation:

d[P)/dt = k,[A][B]

We don't know what the rate equation for the catalysed reaction might look
like, but it is reasonable that at least the catalyst concentration will also occur in
it, e.g.:

d[P]/dt = k,[Cat][A][B] (or d[P}/dt = ks[Cat][A], etc.)

Hence the dimension ("the order") of the reaction is different, even in the
simplest case, and hence a comparison of the two rate constants has little
meaning. Comparisons of rates are meaningful only if the catalysts follow the
same mechanism and if the product formation can be expressed by the same
rate equation. In this instance we can talk about rate enhancements of catalysts
relative to another. If an uncatalysed reaction and a catalysed one occur
simultaneously in a system we may determine what part of the product is made
via the catalytic route and what part isn't. In enzyme catalysis and enzyme
mimics one often compares the k, of the uncatalysed reaction with k, of the
catalysed reaction; if the mechanisms of the two reactions are the same this
may be a useful comparison. A practical yardstick of catalyst performance in
industry is the “space-time-yield” mentioned above, that is to say the yield of
kg of product per reactor volume per unit of time (e.g. kg product/m’h),
assuming that other factors such as catalyst costs, including recycling, and
work-up costs remain the same.

In practice the rate equation may take a much more complicated form than
the ones shown above. The rate equation may tell us something about the
mechanism of the reaction.

Before we turn to "mechanisms" let us repeat how a catalyst works. We can
reflux carboxylic acids and alcohols and nothing happens until we add traces of
mineral acid that catalyse esterification. We can store ethene in cylinders for
ages (until the cylinders have rusted away) without the formation of
polyethylene, although the formation of the latter is exothermic by more than
80 kjoule/mol. We can heat methanol and carbon monoxide at 250 °C and 600
bar without acetic acid being formed. After we have added the catalyst the
desired products are obtained at a high rate.

A catalyst lowers the barrier of activation of a reaction, i.e. it lowers the
activation energy. When protons or Lewis acids are the catalysts this
description seems accurate, as for instance in a Diels-Alder reaction (Figure
1.2):
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Figure 1.2. Lewis acid catalysis; the “base case”

The catalyst makes the dienophile more electrophilic. It lowers the energy
level of the LUMO and the interaction between the LUMO of the dienophile
and the HOMO of the diene increases. As a result the reaction becomes faster
than the uncatalysed one. Accidentally it becomes also more regioselective. In
this instance the catalysed reaction is very much the same as the uncatalysed
reaction. Often this is not the case. In particular when the reagents are totally
unreactive towards one another (ethene versus ethene, methanol versus CO, see
above) the simple picture of a catalyst that lowers the reaction barrier is an
oversimplification.

The following description is more general. A catalyst provides a more
attractive reaction pathway for the reagents in order to arrive at the products.
This new pathway may involve many steps and may be rather complicated.
Imagine the direct reaction between methanol and CO. One can calculate what
the most likely reaction pathway for the thermal reaction looks like using ab
initio molecular orbital methods. It may well be that an almost complete
dissociation of the methyl and hydroxyl bond is needed before CO starts
interacting with the methanol fragments. (The temperature required for this
reaction also allows the energetically more attractive formation of methane and
CO,!) The catalytic reaction involves the formation of methyl iodide, reaction
of methyl iodide with a rhodium complex, reaction of the methyl rhodium
fragment with co-ordinated CO, etc. which is not quite the simplest and most
direct route one can imagine and yet it is the basis of a highly sophisticated
catalytic process. The catalyst brings the reagents together in a reactive state.
Summarising, a catalyst provides a new reaction pathway with a low barrier of
activation, which may involve many intermediates and many steps. The
sequence of steps we call the mechanism of the reaction. Mechanism also
refers to the more detailed description of a reaction at the molecular bonding
level. During the process, the catalytic cycle, the catalyst participates in many
"complexes" all of which one can call "the" catalyst. It cycles continuously
from one species to another. In this sense the catalyst itself remains unchanged
during the catalytic conversion (Ostwald, page 1).



