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PREFACE

Through six editions now, Mathematical Methods for Physicists has provided all the math-
ematical methods that aspirings scientists and engineers are likely to encounter as students
and beginning researchers. More than enough material is included for a two-semester un-
dergraduate or graduate course.

The book is advanced in the sense that mathematical relations are almost always proven,
in addition to being illustrated in terms of examples. These proofs are not what a mathe-
matician would regard as rigorous, but sketch the ideas and emphasize the relations that
are essential to the study of physics and related fields. This approach incorporates theo-
rems that are usually not cited under the most general assumptions, but are tailored to the
more restricted applications required by physics. For example, Stokes’ theorem is usually
applied by a physicist to a surface with the tacit understanding that it be simply connected.
Such assumptions have been made more explicit. '

PROBLEM-SOLVING SKILLS

The book also incorporates a deliberate focus on problem-solving skills. This more ad-
vanced level of understanding and active learning is routine in physics courses and requires
practice by the reader. Accordingly, extensive problem sets appearing in each chapter form
an integral part of the book. They have been carefully reviewed, revised and enlarged for
this Sixth Edition.

PATHWAYS THROUGH THE MATERIAL

Undergraduates may be best served if they start by reviewing Chapter 1 according to the
level of training of the class. Section 1.2 on the transformation properties of vectors, the
cross product, and the invariance of the scalar product under rotations may be postponed
until tensor analysis is started, for which these sections form the introduction and serve as

xi
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examples. They may continue their studies with linear algebra in Chapter 3, then perhaps
tensors and symmetries (Chapters 2 and 4), and next real and complex analysis (Chap-
ters 5-7), differential equations (Chapters 9, 10), and special functions (Chapters 11-13).

In general, the core of a graduate one-semester course comprises Chapters 5-10 and
11-13, which deal with real and complex analysis, differential equations, and special func-
tions. Depending on the level of the students in a course, some linear algebra in Chapter 3
(eigenvalues, for example), along with symmetries (group theory in Chapter 4), and ten-
sors (Chapter 2) may be covered as needed or according to taste. Group theory may also be
included with differential equations (Chapters 9 and 10). Appropriate relations have been
included and are discussed in Chapters 4 and 9.

A two-semester course can treat tensors, group theory, and special functions (Chap-
ters 11-13) more extensively, and add Fourier series (Chapter 14), integral transforms
(Chapter 15), integral equations (Chapter 16), and the calculus of variations (Chapter 17).

CHANGES TO THE SIXTH EDITION

Improvements to the Sixth Edition have been made in nearly all chapters adding examples
and problems and more derivations of results. Numerous left-over typos caused by scan-
ning into LaTeX, an error-prone process at the rate of many errors per page, have been
corrected along with mistakes, such as in the Dirac y-matrices in Chapter 3. A few chap-
ters have been relocated. The Gamma function is now in Chapter 8 following Chapters 6
and 7 on complex functions in one variable, as it is an application of these methods. Dif-
ferential equations are now in Chapters 9 and 10. A new chapter on probability has been
added, as well as new subsections on differential forms and Mathieu functions in response
to persistent demands by readers and students over the years. The new subsections are
more advanced and are written in the concise style of the book, thereby raising its level to
the graduate level. Many examples have been added, for example in Chapters 1 and 2, that
are often used in physics or are standard lore of physics courses. A number of additions
have been made in Chapter 3, such as on linear dependence of vectors, dual vector spaces
and spectral decomposition of symmetric or Hermitian matrices. A subsection on the dif-
fusion equation emphasizes methods to adapt solutions of partial differential equations to
boundary conditions. New formulas have been developed for Hermite polynomials and are
included in Chapter 13 that are useful for treating molecular vibrations; they are of interest
to the chemical physicists.
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CHAPTER 1

VECTOR ANALYSIS

1.1 DEFINITIONS, ELEMENTARY APPROACH

In science and engineering we frequently encounter quantities that have magnitude and
magnitude only: mass, time, and temperature. These we label scalar quantities, which re-
main the same no matter what coordinates we use. In contrast, many interesting physical
quantities have magnitude and, in addition, an associated direction. This second group
includes displacement, velocity, acceleration, force, momentum, and angular momentum.
Quantities with magnitude and direction are labeled vector quantities. Usually, in elemen-
tary treatments, a vector is defined as a quantity having magnitude and direction. To dis-
tinguish vectors from scalars, we identify vector quantities with boldface type, that is, V.

Our vector may be conveniently represented by an arrow, with length proportional to the
magnitude. The direction of the arrow gives the direction of the vector, the positive sense
of direction being indicated by the point. In this representation, vector addition

C=A+B (1.1)

consists in placing the rear end of vector B at the point of vector A. Vector C is then
represented by an arrow drawn from the rear of A to the point of B. This procedure, the
triangle law of addition, assigns meaning to Eq. (1.1) and is illustrated in Fig. 1.1. By
completing the parallelogram, we see that

C=A+B=B+A, (1.2)

as shown in Fig. 1.2. In words, vector addition is commutative.
For the sum of three vectors

D=A+B+C,
Fig. 1.3, we may first add A and B:
A+B=E.

1
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FIGURE 1.1  Triangle law of vector
addition.

B

FIGURE 1.2 Parallelogram law of
vector addition.

B

D

FIGURE 1.3 Vector addition is

associative.
Then this sum is added to C:

D=E+C.
Similarly, we may first add B and C:

B+ C=F.
Then

D=A+F.

In terms of the original expression,
(A+B)+C=A+(B+C).

Vector addition is associative.
A direct physical example of the parallelogram addition law is provided by a weight
suspended by two cords. If the junction point (O in Fig. 1.4) is in equilibrium, the vector
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Y

FIGURE 1.4 Equilibrium of forces: Fi + F, = —F3.

sum of the two forces F and F, must just cancel the downward force of gravity, F3. Here
the parallelogram addition law is subject to immediate experimental verification.!

Subtraction may be handled by defining the negative of a vector as a vector of the same
magnitude but with reversed direction. Then

A—-B=A+(-B).
In Fig. 1.3,
A=E-B.

Note that the vectors are treated as geometrical objects that are independent of any coor-
dinate system. This concept of independence of a preferred coordinate system is developed
in detail in the next section.

The representation of vector A by an arrow suggests a second possibility. Arrow A
(Fig. 1.5), starting from the origin,2 terminates at the point (A, Ay, A;). Thus, if we agree
that the vector is to start at the origin, the positive end may be specified by giving the
Cartesian coordinates (A, Ay, A;) of the arrowhead.

Although A could have represented any vector quantity (momentum, electric field, etc.),
one particularly important vector quantity, the displacement from the origin to the point

IStrictly speaking, the parallelogram addition was introduced as a definition. Experiments show that if we assume that the
forces are vector quantities and we combine them by parallelogram addition, the equilibrium condition of zero resultant force is
satisfied.
2We could start from any point in our Cartesian reference frame; we choose the origin for simplicity. This freedom of shifting
the origin of the coordinate system without affecting the geometry is called translation invariance.
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(A A,,0)

FIGURE 1.5 Cartesian components and direction cosines of A.

(x,y, 2), is denoted by the special symbol r. We then have a choice of referring to the dis-
placement as either the vector r or the collection (x, y, z), the coordinates of its endpoint:

re (x,y,2). (1.3)

Using r for the magnitude of vector r, we find that Fig. 1.5 shows that the endpoint coor-
dinates and the magnitude are related by

X =rcosc, y=rcosp, z=rcosy. (1.4)

Here cos «, cos B, and cos y are called the direction cosines, « being the angle between the
given vector and the positive x-axis, and so on. One further bit of vocabulary: The quan-
tities Ay, Ay, and A; are known as the (Cartesian) components of A or the projections
of A, with cos? @ + cos? B + cos? y = 1.

Thus, any vector A may be resolved into its components (or projected onto the coordi-
nate axes) to yield Ay = Acosa, etc., as in Eq. (1.4). We may choose to refer to the vector
as a single quantity A or to its components (Ax, Ay, A;). Note that the subscript x in A,
denotes the x component and not a dependence on the variable x. The choice between
using A or its components (Ay, Ay, A;) is essentially a choice between a geometric and
an algebraic representation. Use either representation at your convenience. The geometric
“arrow in space” may aid in visualization. The algebraic set of components is usually more
suitable for precise numerical or algebraic calculations.

Vectors enter physics in two distinct forms. (1) Vector A may represent a single force
acting at a single point. The force of gravity acting at the center of gravity illustrates this
form. (2) Vector A may be defined over some extended region; that is, A and its compo-
nents may be functions of position: Ay = A, (x, y,z), and so on. Examples of this sort
include the velocity of a fluid varying from point to point over a given volume and electric
and magnetic fields. These two cases may be distinguished by referring to the vector de-
fined over a region as a vector field. The concept of the vector defined over a region and
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being a function of position will become extremely important when we differentiate and
integrate vectors.

At this stage it is convenient to introduce unit vectors along each of the coordinate axes.
Let X be a vector of unit magnitude pointing in the positive x-direction, ¥, a vector of unit
magnitude in the positive y-direction, and Z a vector of unit magnitude in the positive z-
direction. Then XA, is a vector with magnitude equal to |A,| and in the x-direction. By
vector addition,

A=3XA,+YA, +12A.. (1.5)
Note that if A vanishes, all of its components must vanish individually; that is, if
A =0, then Ay =A,=A;=0.

This means that these unit vectors serve as a basis, or complete set of vectors, in the three-
dimensional Euclidean space in terms of which any vector can be expanded. Thus, Eq. (1.5)
is an assertion that the three unit vectors X, ¥, and Z span our real three-dimensional space:
Any vector may be written as a linear combination of X, §, and Z. Since X, ¥, and Z are
linearly independent (no one is a linear combination of the other two), they form a basis
for the real three-dimensional Euclidean space. Finally, by the Pythagorean theorem, the
magnitude of vector A is

2
Al = (A2 + A2 + 42)'/2, (1.6)

Note that the coordinate unit vectors are not the only complete set, or basis. This resolution
of a vector into its components can be carried out in a variety of coordinate systems, as
shown in Chapter 2. Here we restrict ourselves to Cartesian coordinates, where the unit
vectors have the coordinates X = (1,0, 0), ¥ = (0, 1,0) and Z = (0, 0, 1) and are all constant
in length and direction, properties characteristic of Cartesian coordinates.

As a replacement of the graphical technique, addition and subtraction of vectors may
now be carried out in terms of their components. For A = XA, + yA, + ZA; and B =
XB. +¥By, +12B.,

AEB=X(A; % By) +¥J(Ay £ By) +2(A; %+ B;). (1.7)

It should be emphasized here that the unit vectors X, ¥, and Z are used for convenience.
They are not essential; we can describe vectors and use them entirely in terms of their
components: A < (Ay, Ay, A;). This is the approach of the two more powerful, more
sophisticated definitions of vector to be discussed in the next section. However, X, ¥, and
Z emphasize the direction.

So far we have defined the operations of addition and subtraction of vectors. In the next
sections, three varieties of multiplication will be defined on the basis of their applicability:
a scalar, or inner, product, a vector product peculiar to three-dimensional space, and a
direct, or outer, product yielding a second-rank tensor. Division by a vector is not defined.
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Exercises

1.1.1
1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

1.1.7

1.1.8

1.1.9

Show how to find A and B, given A + B and A — B.

The vector A whose magnitude is 1.732 units makes equal angles with the coordinate
axes. Find Ay, Ay, and A;.

Calculate the components of a unit vector that lies in the xy-plane and makes equal
angles with the positive directions of the x- and y-axes.

The velocity of sailboat A relative to sailboat B, Vi, is defined by the equation v =
va — vp, Where vy is the velocity of A and vg is the velocity of B. Determine the
velocity of A relative to B if

v4 = 30 km/hr east
vp = 40 km/hr north.

ANS. Vi) = 50 km/hr, 53.1° south of east.

A sailboat sails for 1 hr at 4 km/hr (relative to the water) on a steady compass heading
of 40° east of north. The sailboat is simultaneously carried along by a current. At the
end of the hour the boat is 6.12 km from its starting point. The line from its starting point
to its location lies 60° east of north. Find the x (easterly) and y (northerly) components
of the water’s velocity.

ANS. veast = 2.73 km/hr, vgorth & 0 km/hr.

A vector equation can be reduced to the form A = B. From this show that the one vector
equation is equivalent to three scalar equations. Assuming the validity of Newton’s
second law, F = ma, as a vector equation, this means that @, depends only on F, and
is independent of Fy and F;.

The vertices A, B, and C of a triangle are given by the points (—1, 0, 2), (0, 1, 0), and
(1, =1, 0), respectively. Find point D so that the figure ABC D forms a plane parallel-
ogram.

ANS. (0, —2,2) or (2,0, =2).
A triangle is defined by the vertices of three vectors A, B and C that extend from the

origin. In terms of A, B, and C show that the vector sum of the successive sides of the
triangle (AB + BC + CA) is zero, where the side AB is from A to B, etc.

A sphere of radius a is centered at a point rj.

(a) Write out the algebraic equation for the sphere.
(b) Write out a vector equation for the sphere.

ANS. @ (x —x)?+(y—y)?+@—-2)* =d’.
(b) r =r; + a, with r; = center.
(a takes on all directions but has a fixed magnitude a.)



