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Preface to the Third Edition

A First Course in Abstract Algebra introduces number theory, groups, and commutative
rings. Group theory was invented by Galois in the early 1800s, when he used groups
to completely determine those polynomials whose roots can be found with generaliza-
tions of the quadratic formula. Nowadays, the language of group theory is the precise
way to discuss various types of symmetry, both in geometry and elsewhere. Thus, be-
sides introducing Galois’s ideas, we classify certain planar designs called friezes, and
we also apply group theory to solve some intricate counting problems (how many 6-
beaded bracelets are there if each bead is either red, white, or blue?). Commutative
rings provide the proper context in which to study number theory as well as many as-
pects of the theory of polynomials. Ideas such as greatest common divisor of integers
and modular arithmetic extend effortlessly to polynomial rings in one variable. There
are applications to public access codes, calendars, Latin squares, magic squares, and
design of experiments. We then consider vector spaces with scalars in arbitrary fields
(not just the reals), and this study allows us to solve the classical Greek problems in-
volving ruler-compass constructions: trisecting an angle; doubling a cube; squaring a
circle; constructing regular n-gons. Linear algebra over finite fields is applied to codes,
showing how one can decode messages sent over a noisy channel (for example, pho-
tographs sent to Earth from other planets). The classical formulas finding the roots of
cubic and quartic polynomials are proved, after which both groups and commutative
rings are combined in proving Galois’s theorem (polynomials whose roots are obtain-
able by such formulas have solvable Galois groups) and its corollary, Abel’s theorem
(there are polynomials of degree 5 whose roots cannot be found by a generalization
of these formulas). This is only an introduction to Galois theory; readers wishing to
learn more of this beautiful subject will have to see a more advanced text. Algebra is
fascinating, and I hope that my enthusiasm for it is transmitted to my readers.

To accomodate readers having different backgrounds, this book contains more ma-
terial than can be covered in a one- or two-semester course. The first four chapters
contain all the results usually covered in a first year. But many sections need not be
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covered in lectures, either because they are well known (induction, binomial theorem,
complex numbers, linear algebra), they are not of primary importance, or they will be
covered more thoroughly in more advanced courses. However, instructors may assign
projects for interested students from these optional sections as well as from later chap-
ters. Those readers whose appetites have been whetted by results in the first chapters
may browse in the end of the book, which investigates groups and rings further. The
chapter Groups II proves that finite abelian groups are direct products of cyclic groups,
gives the existence (and significance) of large p-subgroups of finite groups, and clas-
sifies symmetry groups of friezes. The last chapter, an introduction to polynomials in
several variables, includes Hilbert’s basis theorem, varieties, Hilbert’s Nullstellensatz
for C[xy, ..., x,], and algorithmic methods associated with Grobner bases. Thus, the
last two chapters display some directions in which the earlier ideas have developed,
and so they can serve as a reference for some algebra beyond the present courses.
Let me mention some new features of this edition.

e [ have rewritten the text, making the exposition more smooth.

e In order that the reader know what is essential in the first five chapters, I have in-
serted a small arrow next to the most important sections, subsections, definitions,
theorems, and examples.

e Chapters 2 and 3, which introduce groups and commutative rings, are essentially
independent of one another. Thus, with very minor changes, it is possible to
study groups first or to study commutative rings first.

e More linear algebra, over arbitrary fields, has been included. This allows me to
include a new section on codes, which goes far enough to decode Reed-Solomon
codes.

o There is a new section classifying frieze groups in the plane.
e Exercises.

(1) The previous edition had 414 exercises; this edition has 574 exercises.

(ii) Each exercise set begins with a multipart true-false question which reviews
important items in its section.

(iii) Every exercise explicitly cited in the text is marked by *; moreover, every
citation gives the page number on which the cited exercise appears.

(iv) Certain exercises, those marked by H, have hints in a section at the end of
the book; thus, readers may consider problems on their own before reading
the hints.
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e One numbering system enumerates all lemmas, theorems, propositions, corollar-
ies, and examples, so that finding back references is easy.

e There are several pages of Special Notation, giving page numbers where notation
is introduced.

Today, abstract algebra is viewed as a challenging course; many bright students
seem to have inordinate difficulty learning it. Certainly, students must learn to think in
a new way. Axiomatic reasoning may be new to some; others may be more visually
oriented. Some students have never written proofs; others may have once done so, but
their skills have atrophied from lack of use. But none of these obstacles adequately
explains the observed difficulties. After all, the same obstacles exist in beginning real
analysis courses, but most students in these courses do learn the material, perhaps af-
ter some early struggling. However, the difficulty of standard algebra courses persists,
whether groups are taught first, whether rings are taught first, or whether texts are
changed. I believe that a major factor contributing to the difficulty in learning abstract
algebra is that both groups and rings are introduced in the first course; as soon as a stu-
dent begins to be comfortable with one topic, it is dropped to study the other. Further-
more, leaving group theory or commutative ring theory before significant applications
are made gives students the false impression that the theory is either of no real value
or, more likely, that it cannot be appreciated until some future indefinite time. Imagine
a beginning analysis course in which both real and complex analysis are introduced
in the first semester; would there be ample time to prove the intermediate value theo-
rem and Liouville’s theorem? If algebra is taught as a one-year (two-semester) course,
there is no longer any reason to crowd both topics into the first course, and a truer,
more attractive, picture of algebra is presented. This option is more practical today
than it was in the past, for the many applications of abstract algebra have increased the
numbers of interested students, many of whom work in other disciplines. Therefore, I
have rewritten the text for two audiences. On the one hand, this new edition can serve
as a text for those who prefer the currently popular arrangement of introducing both
groups and rings in the first semester. There is ample material in the book so that it
can serve as a text for a sequel course as well. On the other hand, the book can also
serve as a text for a one-year course. There are many possible organizations; I suggest
covering number theory and commutative rings in the first semester, and linear algebra
and group theory in the second. Detailed syllabi for such courses are presented in the
next section.

Giving the etymology of mathematical terms is rarely done in mathematics texts.
Let me explain, with an analogy, why I have included derivations of many terms. There
are many variations of standard poker games and, in my poker group, the dealer an-
nounces the game of his choice by naming it. Now some names are better than others.
For example, “Little Red” is a game in which one’s smallest red card is wild; this is
a good name because it reminds the players of its distinctive feature. On the other
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hand, “Aggravation” is not such a good name, for though it is, indeed, suggestive, the
name does not distinguish this particular game from several others. Most terms in
mathematics have been well chosen; there are more red names than aggravating ones.
An example of a good name is even permutation, for a permutation is even if it is a
product of an even number of transpositions. Another example of a good term is the
parallelogram law describing vector addition. But many good names, clear when they
were chosen, are now obscure because their roots are either in another language or in
another discipline. The trigonometric terms tangent and secant are good names for
those knowing some Latin, but they are obscure otherwise (see a discussion of their
etymology on page 32). The term mathematics is obscure only because most of us
do not know that it comes from the classical Greek word meaning “to learn”. The
term corollary is doubly obscure; it comes from the Latin word meaning “flower”, but
why should some theorems be called flowers? A plausible explanation is that it was
common, in ancient Rome, to give flowers as a gratuity, and so a corollary is a gift
bequeathed by a theorem. The term theorem comes from the Greek word meaning “to
watch” or “to contemplate” (theatre has the same root); it was used by Euclid with its
present meaning. The term lemma comes from the Greek word meaning “taken” or
“received”; it is a statement that is taken for granted (for it has already been proved) in
the course of proving a theorem. I believe that etymology of terms is worthwhile (and
interesting!), for it often aids understanding by removing unnecessary obscurity.

In addition to thanking again those who helped me with the first two editions, I
give special thanks to George Bergman for his many suggestions as well as for his
generosity in allowing me to use many interesting exercises. I also thank Chris Heil,
for pointing out subtle errors I had not discovered, and Iwan Duursma for his help
with the new section on coding. Finally, I thank William Chin, Joel S. Foisy, Robert
Friedman, Blair F. Goodlin, Zahid Hasan, Ilya Kapovich, Dieter Koller, Fatma Irem
Koprulu, Mario Livio, Thomas G. Lucas, Leon McCulloh, Arnold W. Miller, Charles
H. Morgan, Jr., Chuang Peng, Eric Schmutz, Brent B. Solie, Paul Weichsel, and John
Wetzel.

George Lobell was with Prentice Hall until this edition was essentially complete.
He consistently gave me sage advice about its content and style, and my book is sig-
nificantly better now than it would have been without him. I am happy to thank him
for his guidance.

Joseph Rotman
rotman @math.uiuc.edu



Suggested Syllabi

Here are some one-semester courses using this text, where a semester consists of about
45 one-hour lectures (hour lectures are usually 50 minutes in length; Paul Halmos
noted that a microcentury, one millionth of a century, is about 52.6 minutes). We
give five syllabi. The first, Table 1, is a “standard” syllabus designed for the currently
popular course organization: a one-semester course which introduces both groups and
rings. This syllabus has three topics: Chapter 1: number theory; Chapter 2: groups;
Chapter 3: commutative rings. It is possible to invert the order of topics and treat
commutative rings before groups, for I have rewritten Chapters 2 and 3 so that they
are now essentially independent of one another. As an aside, I disagree with today’s
received wisdom that expounding groups first is more efficient than doing rings first;
in spite of Chapter 3’s mentioning almost no group theory, its present version is about
the same length as its versions in previous editions.

Either of the second two syllabi, Tables 2 and 3, may be used for a sequel course
(there is ample material in the text which can be used to create other sequel courses as
well).

My own ideas about teaching abstract algebra have changed. I now think that the
best presentation is a year-long two-semester course in which only one of groups or
rings is taught in the first semester. Moreover, I recommend such a course whose first
semester covers number theory and commutative rings, and whose second semester
covers linear algebra and group theory. Tables 4 and 5 are syllabi for such a course.
(Of course, I recognize merit in arguments advocated by those who prefer to discuss
groups first. A one-year course using this text and organized about this choice should
be easy to design.) I think that doing commutative rings first is more natural. As
one passes from Z to k[x], one can watch arithmetic results and proofs generalize to
polynomials. If the second semester begins with linear algebra, then the discussion of
groups takes on more significance, for matrix groups, with their geometric context, are
another source of concrete examples of groups in addition to groups of permutations.
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Section Topics Hours
1.3 Division algorithm, euclid lemma, euclidean algorithm 3
1.4 Fundamental theorem of arithmetic 1
1.5 Congruences, Fermat, Chinese remainder theorem 3
2.1 Functions 1
2.2 Permutations B
2.3 Groups and examples 2
2.4 Subgroups and Lagrange’s theorem 2
2.5 Homomorphisms 2
2.6 Quotient groups and isomorphism theorems -+
2.7 Group actions 4
2.8 Burnside counting (skim) 1
3.1 Commutative rings and subrings 1
3.2 Fields 1
33 Polynomial rings R[x] 1
34 Homomorphisms 2
35 From numbers to polynomials 3
3.6 Unique factorization for polynomials 1
3.7 Irreducibility (skim) 2
3.8 Quotient rings and finite fields 3

Table 1: Standard One-Semester Syllabus: 41 Hours




Section Topics | Hours
4.1 Vector spaces and dimension 5
4.1 Gaussian elimination 3
4.2 Euclidean constructions 3
43 Linear transformations 4
4.4 Determinants and eigenvalues 2
4.5 Coding 6
5.1 Classical formulas 2
52 Solvability by radicals 4
5.2 Translation into group theory 4
5.3 Epilog 1
6.1 Finite abelian groups 3
6.2 Sylow theorems 3

Table 2: Second Semester, Syllabus A: 40 Hours

Section Topics Hours
4.1 Vector spaces and dimension 5
4.1 Gaussian elimination 3
4.2 Euclidean constructions 3
4.3 Linear transformations -+
4.4 Determinants and eigenvalues 2
6.1 Finite abelian groups 3
6.2 Sylow theorems 3
6.3 Symmetry groups of friezes (skim) 3
Tl Prime ideals and maximal ideals 1
72 Unique factorization 3
7.3 Noetherian rings 2
7.4 Varieties 6

Table 3: Second Semester: Syllabus B: 38 Hours

Suggested Syllabi ix
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Section Topics Hours
1.3 Division algorithm, euclid lemma, euclidean algorithm 4
1.4 Fundamental theorem of arithmetic 1
1.5 Congruences, Fermat, Chinese remainder theorem 4
2.1 Functions 1
3.1 Commutative rings and subrings 2
3.2 Fields I
3.3 Polynomial rings R[x] 2
5.1 Classical formulas 2
34 Homomorphisms 2
3.5 From numbers to polynomials 4
3.6 Unique factorization for polynomials 2
3.7 Irreducibility 3
3.8 Quotient rings and finite fields 4
39 Latin squares, magic squares, projective planes (skim) 1
7.1 Prime ideals and maximal ideals 1
7.2 Unique factorization (skim) 1
7:3 Noetherian rings (skim) 1
7.4 Varieties (skim) 3

Table 4: One-Year Version, Semester I: 39 Hours
Section Topics Hours
4.1 Vector spaces 5
4.1 Gaussian elimination 3
4.2 Euclidean constructions 3
43 Linear transformations 4
44 Eigenvalues 2
4.5 Coding (skim) 3
2:2 Permutations 4
23 Groups and examples 2
24 Subgroups and Lagrange’s theorem 2
2.5 Homomorphisms 2
2.6 Quotient groups and isomorphism theorems 4
2.7 Group actions 4
2.8 Burnside counting (skim) 1
6.1 Finite abelian groups (skim) 1
6.2 Sylow theorems (skim) 1
6.3 Ornamental symmetry (skim) 1

Table 5: One-Year Version, Semester II: 42 Hours




To the Reader

The essential sections, subsections, theorems, definitions, and examples in the first
five chapters have a small arrow in the margin next to them (some things, though
interesting, are not as important as others).

Exercises in a text have two main functions: to reinforce the reader’s grasp of the
material, and to provide puzzles whose solutions give a certain pleasure. Therefore,
the serious reader should attempt all the exercises (many are not difficult).

There are two special notations associated to exercises. An asterisk, as in *2.44,
means that this exercise is cited elsewhere in the text. For example, the citation reads
“Exercise 2.44 on page 146.” The letter H, as in H2.47, means that there is a hint to
Exercise 2.47 in the Hints section at the back of the book. Neither of these notations
indicates the relative difficulty of an exercise.

Most exercise sets begin with a multipart question labeled “True or false with
reasons.” If one of the parts is the statement, “The fourth roots of unity are i and
—i,” then the correct answer is, “False; 1 is also a fourth root of unity.” The dec-
laration “False” must be supported by a concrete example. If another statement is
“24+ 44 --- 4100 = 50 x 51,” then the correct response is “True; using Proposi-
tion 1.6, we have

244+ +100=2[1+2+ - +50] = 2[5(50 x 51)] = 50 x 51.”

The declaration ‘“True” must be supported either by a “one-line proof™ using results
proved in the text or by » short argument from first principles.
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