CESEHENR RIFXMNE SIERERIE

pEE . W HEEEEEEENES S EEEEE NS W &R = R

) m
&) M
i K
| |
a a
]
d
2l
a
B
1l
g
il
il
1]
i
o
al
]
L]
il

CPapt 55

(ZESZhR)
C Traps and Pltfalls

(%) Andrew Koenig #

Z A%Hlllfﬂ.tﬂlbia‘i

% SSSSSSSSSSSSSSSSSSS

PEARSON

@ ASE A E
(Z=3ZhR)
C Traps and Pitfalls :

() Andrew Koenig 3

A R OEB O R
it =

EHEMSKE (C1P) i

CEEBt 5804 = C traps and pitfalls : &L /
() 9% (Koenig,A.) . — 2. — k= : AE
MR R iR AL, 2015.5

ISBN 978-7-115-38035-7

[. @C- II. @4l-- M. QCES —BFHIHT—FEX
V. @OTP312

th B A BB ECIPEEE & F (2014) 553003585
HERE

3 CEFZERERMENSEEE. 5{;3:%8% A,é?%%a# CEE, M %%
CEFAKERELTES E*?E%ﬁ#?ﬂ%’ﬁ%

LBy H 8 E, 5
%Mﬁ?ﬁ%tﬁ?

M ES=ZL.
A PESH
FLULEFE.

* = [3%] Andrew Koenig
REAHE KEE &5

¢ A\RHEHBRHBEBRERIT {atEsRasss s
& 100164 B E# 315@ptpress.com.cn
ik hnp:/www.ptpress.com.cn
EtREERLHREFERAFTNE

® FE: 700<1000 1/16

Hzk: 10

FH: 207 FF 015 s AF 24

HF: 2501-5000 7 2015 £ 5 BdbE | X8
EERERAZCS BEF: 01-2012-9285 5

sEffr: 39.00 7T

EEREAL. (010)81055410 ENEFREHRZ: (010)81055316
RARAY%: (010) 81055315

R 7= BA

Original edition, C Traps and Pitfalls, 9780201179286, by Andrew Koenig, published
by Pearson Education, Inc., publishing as Prentice-Hall, Copyright © 1989.

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording or by
any information storage retrieval system, without permission from Pearson Inc.

English reprint published by Pearson Education North Asia Limited and Posts &
Telecommunication Press, Copyright © 2015.

This edition is manufactured in the People’s Republic of China, and is authorized for
sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macau SAR).

A1 BT A1 Pearson Education HiRUEMBOCBI thbR%E, Tobr%e& A5 .

1

Al

PR FERTEmE, fONTFMTAEVNENNEEREEFEEERTR
RS ETFR TR, QIR KVUE A 0, PN S 2 MER, RENES
FECREI T, FMiIMAZRASHARIFN VITHLE 224800 FE. W
FEAITENST, TREBEEENMNFHBRREEY, B-BR4dE, &4
SNSRI =R

EMERAEFHESHE . B —MEFRINES, SFE—EES
FetE, ROEESH AT EARENBING KRG . S ARZENE, XERER
SRIARE T HESHIARM T, BX PR —MES, LTI EFREBERME
1) -sedRME U, ik Bt (EE A TR R 5 LR
PR UM, BEMNRYE k.

HH - rERANCEIR RN SR 1977 . 4N, A ERTEX AT K
SHARE (IBM JURUHLAI 4D &l b, BfET &N “PLARMEES ‘FEBE”
Mk 5. R aEr, KR SHEE T KFIAE AT&T M IURERE, 7EaHEHE

JEERN FEMFRIESE PLL, mURERED EENHFAESHNE C. EIUR
Sdsa TAERD 10), RBIE T EERS%, FiF CRFA (WEBERAN £

LU RIS 2B S % DR

1985 4, FIFHUHCHE A 6 C i ROIL K U, S (EAFREH 45 MRS 1 —
i SO A R I SO S| Al R KK HE TR R JEAT 2 000 2 AR IR
SR ROV TR0 MBI A L RO HHS L EZIE XMA F L S R
FR G T AL & TR S A

ERET4

ARG R, EE RS ST, mTEs T
SEE IR . BEER Sk, LR RS P PR . XA R Sbr b HLBRY B

{E& &g

Andrew Koenig

AT&T KR FFOE RIS (A DURSES %) Mdi. fAl 1986 SETHaG A C ifF S
MIEFST, 1977 FMATURERZE. fhdw’s 1 L REREE, Jf ”
£ 1988 FHLHIT T8 — M LML C++2i. {1 ISO/ANSI
CHZTRL AL 1989 4, flugh i A T & %, JF— BHA(EIN
H&%#E. b kKT CH+J7lM 100 £ /&8,
Addsion-Wesley ik T C Trap and Pitfalls, ((C [giHF 5 8F5)) F
Ruminations on C++ ({C++JT KD, LNt 7 5 s

Andrew Koenig NMUEH £ H 1) CHIFA . WA A4,
MHERGSE T CHREAMA S, X C728 b AR R 31 & 2 1) 5 .

=t
o

XF ANSIC

(ARG EAASI, ANSIE C bdE i A dpg) o 5. kML G, 76 ANSI & 258K
WAz, “ANSLC™ [HELMNEEA Tl & SEASIERT . fis2Br 1, ANSI rvEqk
PRI RGO, AT A IRAT) ANST C brdk N 23 A |- ANA] g4 T As
A 12 C At b CaRsl £ ANST BRI S % B CiE SN L &
N i

PERATLC AR AL T C 2 U 88 JEAS S8y b LT ANST brifEsg B, & A
SOOI b N S, i LS B A R G 5 AL L s b i el
ASH) C S i T R KK AR,

Higt

AP] A B AL N2 DT BASER . BRI R B il ©
U L)L, Al /2 Steve Bellovin(6.3 5, Mark Brader(1.1 %), Luca Cardelli
(4.4 1), Larry Cipriani (2.3 17), Guy Harris and Steve Johnson (2.2 5), Phil Karn
(2.2 17, Dave Kristol (7.5 15), George W. Leach (1.1 1), Doug Mcllroy (2.3 1),
Barbara Moo (7.2 15), Rob Pike (1.1 15), Jim Reeds (3.6 5), Dennis Ritchie (2.2
"), Janet Sirkis (5.2 17), Richard Stevens (2.5 '5), Bjarne Stroustrup (2.3 17),
Ephraim Vishnaic (1.4 Y5), LA {7 PSSR ED 2244 & (2.3 19). D faj ROk WL,
A J] A AU 1S A i FR AR R S A ?ﬁ:i)\)li&”"?’f:??i’}éf’fﬂ4§
SESEASIE I KT il TLROA S, JRANB A AT NSRRI . 2D IR IERT R IR AN
T-#ALRE, i HATRE A AL K

S R A i vF 2 AT ik 11 Steve Bellovin, Jim Coplien, Marc
Donner, Jon Forrest, Brian Kernighan, Doug Mcllroy, Barbara Moo, Rob Murray,
Bob Richton, Dennis Ritchie, Jonathan Shapiro, LA 36 A% ide &k 4 (140 %) ¢ . Lee
McMahon 5 Ed Sitar 3451 7500 TR IOVF 2 NG, ARG - HO
o B S A 2 i I . Dave Prosser A J%4RW] 1/ iF % ANSI C 14 {2 4. Brian
Ktrm,g_hanf I TR AT AR ORI

Lj Addison-Wesley {118z #17775 1 fEAm R (4 4idt, 1 Jim DeWolf, Mary Dyer,
Lorraine Ferrier, Katherine Harutunian, Marshall Henrichs, Debbie Lafferty, Keith
Wollman, il Helen Wythe. ™1%&, BfITUL A SEIFAS T JRBTRITE AAT I LA 5 1 1
By, A gL, TR RS0 .

B

i

PUIE A UURERARE, JF AN A G, DRI, A1 e) o AN s, i A
BARRI)1

WRAR R ANEF RO B R P ELE £ C 8 5O e il i, JX A %
DRI E YA é MHO B R4 A C il S e RT3 L E
HiXAY, K2R AR R TR G C R R H s “ el A ks 2
XFE—S Bug!” U1 AR IELEBEZ C 1 3R, A5 JCBE) N AZ B ki) 7 A 47
PR 1 3 4D 78 B T A L

ABARZEMT2

APARREX C EFWRAT. FEF LR R R dotih 5, & ol Aeid 3|
PR, APk TEE KL 10 1) C i S IHFRES, A 17 C i 5P &l
R “RAIE”, H 0 A E T e e S M b R AN CL AR T WLk 1 FA AP
RERI 2K H .

ABAR A CFERE” o JAVAREA A LU L S A T WK E 4 i
bR, WR AT, I8 4B A B8ORS al LI (e 55 L g
19 AN Qi I R N TS & S S WS DB W rcp N S (NI S S (H UG RSl
badn B IR0 5 20 g sl fb N 2256 B0l il EL IR R U1 1 - B o 1 i e
TR REA R, ol A ER R Gz B s L T - Kb

AFIFAATH AT C 5% FE (W Kernighan FiI Ritchie: The C
Programming Language, 5 2 J{X, Prentice-Hall, 1988), (WAt A Cii 55 % T
it (W, Harbison #lI Steele: C: A Reference Manual, * 2 i, Prentice-Hall, 1987).
A AL K B 25 k) Y Sk (W Van Wyk: Data Structures And C Programs .,
Addison-Wesley, 1988), (AN & B& /™4 7 o] B Ktk (W Horton: How To Write Portable
Programs In C, Prentice-Hall, 1989) F§{f: R4 % 11 ¢ W, Kernighan fll Pike: The Unix
Programming Environment, Prentice-Hall, 1984). A< {5t{1 [rib Az (1) i) i 1) o] 4 B ok
B, WEUE TR Cln A R e U W ok, B R L
11 C il 5 ML, WL Feuer: The C Puzzle Book, Prentice-Hall, 1982), A |31If A~ i
AT WAL ASE AR 1 OB RS R RN, DL S e 1 1 A

iEENS 5
APRAH S, TR T RS A TR R R W AR T A C i i A

PR K, Wil Addison-Wesley HIRAE S TRIER . A K Ml IR
AFRES ORI AR I, JF L PR3 .

=
o

fit 17 B) A BE A S HF A B 1R LU

B FHEEFERRI AT&T VURSCR = E H 2
A+, {23F Steve Chappell, Bob Factor, Wayne Hunt, Rob Murray, Will Smith
Dan Stanzione 1 Eric Sumner.

Trap and Other Pitfalls, Snares, Devices and Delusions (as well as Tivo Sniggles and

A4 %% 5| Robert Sheckley ML)/ MEEER G K, H1 42 The People
a Contrivance) (1968 == Dell Books Hiffi).

CONTENTS

0 INEEOAUEEION wuvnissscsssassissssssasssnssssssassssesssssesenssomssessasssnssnssssnsstnesessssssassensasssvenasas 1
1 Lexical pItFalls .ocmmovmmernesssmsminiomaiinissmsmsinsmisnsiseititonsisenssisssssossaiaissaeinss 5
L1 =08 MOt == e 6

1.2 & and § are NOt && OF 11 .o 7

1.3 Greedy lexical analysis.......c.ccoviiiiiiiiiiiiiiiiicce e 7

1.4 Integer CONSEANES.ot 9

1.5 Strings and characters..............cocoiiiiiiiiiiiiccceeec s 10

2 Syntactic Pitfalls.....iiiiciininiriireiisenre et ssesss s sassteessssnenes 13
2.1 Understanding function declarations...........c..coccccvvivvneiecennes 13

2.2 Operators don’t always have the precedence you want........ 17

2.3 Watch those semicolons!........c.cccooviiiiiiiiiiiiiiiec e 20

2.4 The switch statement........c.cccooiiiiiiiiiiiiiiiiii e 22

2.5 Calling fuNCHONS ..iocioiiiiiii i 24

2.6 The dangling else problammi.. .. e wamm wevoscrsmmmmesnsssenossss 24

3 Semantic Pitfalls...cuicisiimsiininisnisissssmsssissssrinssnssssssssssssrssnsasssasnssasorsasss 27
3.1 Pointers and arrays...........ccccviiiiiiiiiiiiiiniiiie e 27

3.2 Pointers are MOt ATTAYS .cicuesesssmsisiesisorers sussssasssusassssararsonsons 32

3.3 Array declarations as parameterscocoooeoiiieniinn 33

3.4 Eschew synecdoche ... 34

3.5 Null pointers are not null Strings...........ccocoovniniin 35

3.6 Counting and asymmetric bounds. ... 36

3.7 Order of evaluationccccocoviiiiiiiini 46

3.8 The &&, 11, and | OPEratorsc.cccovimmirimnmecnmmnsssssisees 48

3.9 Integer OVETflOW ..o 49

3.10 Returning a value from maimn ... 50

C TRAPS AND PITFALLS CONTENTS

00 B 5 1177 RSO OUOSS SRR R R 53
4.1 What is a HNKer? ..o 53

4.2 Declarations vs. definitionNs.coovviriiiiiiiiiiiiiiei i 54

4.3 Name conflicts and the static modifier ... 56

4.4 Arguments, parameters, and return values ... 57

4.5 Checking external types ..o 63

4.6 HEAACT FIlES ..ocoeveverennneeiieine o oneransssneessamaps i3 siEH s S8 TR ppEaassaas sbsoase 66

5 Library fUunCtionscoeiiieeeeicce et 69
5.1 getchar returns an iNtEerccoooiiiiiiiiiiie 70

5.2 Updating a sequential file..............cooiii 70

5.3 Buffered output and memory allocation ... 72

5.4 Using errno for error detection ... 73

5.5 The signal functionccoccooiiiiiiiiiiiciiiiiiiie e 74

6 TRE PrEPTOCEESOT sucseencsussssssssssssoronssnssssrsennssostsssssassnsussassesrussapsrssasssasassasnasosnsns 77
6.1 Spaces matter in macro definitions............c.ocooiiiiinn 77

6.2 Macros are Not fUNCHIONSooviiiiiiiie e 78

6.3 Macros are Not Statements...........oooviiiieiiiieiie e 82

6.4 Macros are not type definitions ... 83

7 Portability pitfallscceccenmssiossisiisasassiissssssnssssassssssisisssssesassnesssssnasnossssssnnsene 85
7.1 Coping with change. ..o, 85

7.2 What's in @ NAMe?................coiiiiiieiee e 87

7.3 How big 1S an INteGer?c.ccccoiiiiiiiieiieieeei e 88

7.4 Are characters signed or uns. ned?...........cocooiiiii 89

7.5 Shift OPerators. ..ot 90

7.6 Memory 1ocation Zeroccse asmmsessssssossssssssossmsons 91

7.7 How does divisSion truncate?cccooeeeevieeeiieeeeeeeie e 92

7.8 How big is a random number?.........c.cccceeiiiniciiiinieiinins 93

7.9 Case COMVETSION ..ottt e et et 93

7.10 Free first, then reallocate?............c.cccoeivriiiiiiiiinicci e 95

7.11 An example of portability problems............c.cccooviriinniinnn. 96

8 AdVICe ANA ANSWETS..cccciiieeeieiriiistiiteriresieessesssesssessesssessesssessassanessssssasssesssnsss 101
Bl AdVICE..iiiiiiiiiiei et 102

B2 AMSWETS ..ouiiiiiiieieiceirte ettt ettt et n e e rea 105

CONTENTS

C TRAPS AND PITFALLS

Appendix: printf, varargs, and StdAArg ... 121
A.1 The printf family. ..o 121
Simple format typescccoiiiiiiiii 123
MOdIfIETS ..o 127
Flags.....ccoooviiiiiiiiiiii, e 130
Variable field width and precisionc.cccocvviiiiiiiniinnnne. 132
NeOIOgISMS ..ot 133
ANachTONISIMS......occiiiiiiiiicic 133

A.2 Variable argument lists with varargs.h ... 134
Implementing varargs . R i s 138

A.3 stdarg.h: the ANSI varargs.h......n. 139

cHAPTER 0: INTRODUCTION

I wrote my first computer program in 1966, in Fortran. I had intended it
to compute and print the Fibonacci numbers up to 10,000: the elements of
the sequence 1, 1, 2, 3, 5, 8, 13, 21, ..., with each number after the second
being the sum of the two preceding ones. Of course it didn’t work:

I =0
J =0
K =1
1 PRINT 10, K
I =3
J = K
K =1+ J

IF (K - 10000) 1, 1, 2
2 CALL EXIT
10 FORMAT (I10)

Fortran programmers will find it obvious that this program is missing an
END statement. Once I added the END statement, though, the program
still didn’t compile, producing the mysterious message ERROR 6.
Careful reading of the manual eventually revealed the problem: the
Fortran compiler [was using would not handle integer constants with
more than four digits. Changing 10000 to 9999 solved the problem.
[wrote my first C program in 1977. Of course it didn’t work:

#include <stdio.h>

main()

{
printf("Hello world");

}

This program compiled on the first try. Its result was a little peculiar,
though: the terminal output looked somewhat like this:

2 INTRODUCTION CHAPTER 0

% cc prog.c

% a.out

Hello world*
Here the % character is the system’s prompt, which is the string the sys-
tem uses to tell me it is my turn to type. The % appears immediately after
the Hello world message because I forgot to tell the system to begin a
new line afterwards. Section 3.10 (page 51) discusses an even subtler
error in this program.

There is a real difference between these two kinds of problem The
Fortran example contained two errors, but the implementation was good
enough to point them out. The C program was technically correct — from
the machine’s viewpoint it contained no errors. Hence there were no
diagnostic messages. The machine did exactly what I told it: it just didn't
do quite what I had in mind.

This book concentrates on the second kind of problem. programs that
don’t do what the programmer might have expected. More than that, it
will concentrate on ways to slip up that are peculiar to C. For example.
consider this program fragment to initialize an integer array with N ele-
ments:

int 1i;
int a(N];
for (i = 0; i <= N; 1++)
afi] = 0;
On many C implementations, this program will go into an infinite loop!
Section 3.6 (page 36) shows why.

Programming errors represent places where a program departs from
the programmer’'s mental model of that program. By their very nature
they are thus hard to classify. I have tried to group them according to
their relevance to various ways of looking at a program.

At a low level, a program is as a sequence of symbols, or tokens, just as
a book is a sequence of words. The process of separating a program into
symbols is called lexical analysis. Chapter 1 looks at problems that stem
from the way C lexical analvsis is done.

One can view the tokens that make up a program as a sequence of
statements and declarations, just as one can view a book as a collection of
sentences. In both cases, the meaning comes from the details of how
tokens or words are combined into larger units. Chapter 2 treats errors
that can arise from misunderstanding these syntactic details.

Chapter 3 deals with misconceptions of meaning: ways a programmer
who intended to say one thing can actually be saying something else.
We assume here that the lexical and syntactic details of the language are
well understood and concentrate on semantic details.

CHAPTER 0 INTRODUCTION 3

Chapter 4 recognizes that a C program is often made out of several
parts that are compiled separately and later bound together. This process
is called linkage and is part of the relationship between the program and
its environment.

That environment includes some set of library routines. Although not
strictly part of the language, library routines are essential to any C pro-
gram that does anything useful. In particular, a few library routines are
used by almost every C program, and there are enough ways to go wrong
using them to merit the discussion in Chapter 5.

Chapter 6 notes that the program we write is not really the program
we run; the preprocessor has gotten at it first. Although various prepro-
cessor implementations differ somewhat, we can say useful things about
aspects that many implementations have in common.

Chapter 7 discusses portability problems — reasons a program might
run on one implementation and not another. It is surprisingly hard to do
even simple things like integer arithmetic correctly.

Chapter 8 offers advice in defensive programming and answers the
exercises from the other chapters.

Finally, an Appendix covers three common but widely misunderstood
library facilities.

Exercise 0-1. Would you buy an automobile made by a company with a
high proportion of recalls? Would that change if they told you they had
cleaned up their act? What does it really cost for your users to find your
bugs for you? O

Exercise 0-2. How many fence posts 10 feet apart do you need to support
100 feet of fence? O

Exercise 0-3. Have you ever cut yourself with a knife while cooking?
How could cooking knives be made safer? Would you want to use a
knife that had been modified that way? O

cHAPTER 1. LEXICAL PITFALLS

When we read a sentence, we do not usually think about the meaning of
the individual letters of the words that make it up. Indeed, letters mean
little by themselves: we group them into words and assign meanings to
those words.

So it is also with programs in C and other languages. The individual
characters of the program do not mean anything in isolation but only in
context. Thus in

the two instances of the - character mean two different things. More
precisely, each instance of - is part of a different token: the first is part of
-> and the second is part of a character string. Moreover, the -> token
has a meaning quite distinct from that of either of the characters that
make it up.

The word token refers to a part of a program that plays much the same
role as a word in a sentence: in some sense it means the same thing every
time it appears. The same sequence of characters can belong to one token
in one context and an entirely different token in another context. The
part of a compiler that breaks a program up into tokens is often called a
lexical analyzer.

For another example, consider the statement:

if (x > big) big = x;

The first token in this statement is if, a keyword. The next token is the
left parenthesis, followed by the identifier x, the “greater than” symbol,
the identifier big, and so on. In C, we can always insert extra space
(blanks, tabs, or newlines) between tokens, so we could have written:

