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Foreword

Modern cryptography depends heavily on number theory, with primality test-
ing, factoring, discrete logarithms (indices), and elliptic curves being perhaps
the most prominent subject areas. Since my own graduate study had empha-
sized probability theory, statistics, and real analysis, when I started work-
ing in cryptography around 1970, I found myself swimming in an unknown,
murky sea. I thus know from personal experience how inaccessible number
theory can be to the uninitiated. Thank you for your efforts to ease the
transition for a new generation of cryptographers.

Thank you also for helping Ralph Merkle receive the credit he deserves.
Diffie, Rivest, Shamir, Adleman and I had the good luck to get expedited
review of our papers, so that they appeared before Merkle’s seminal contribu-
tion. Your noting his early submission date and referring to what has come to
be called “Diffie-Hellman key exchange” as it should, “Diffie-Hellman-Merkle
key exchange”, is greatly appreciated.

It has been gratifying to see how cryptography and number theory have
helped each other over the last twenty-five years. Number theory has been
the source of numerous clever ideas for implementing cryptographic systems
and protocols while cryptography has been helpful in getting funding for this
area which has sometimes been called “the queen of mathematics” because
of its seeming lack of real world applications. Little did they know!

Stanford, 30 July 2001 Martin E. Hellman



Preface to the Second Edition

Number theory is an ezperimental science.

J. W. S. CasseLs (1922-)
Professor Emeritus of Mathematics, The University of Cambridge

If you teach a course on number theory nowadays, chances are it will gen-
erate more interest among computer science majors than among mathe-
matics majors. Many will care little about integers that can be ezpressed
as the sum of two squares. They will prefer to learn how Alice can send a
message to Bob without fear of eavesdropper Eve deciphering it.

BRrAIN E. BLANK, Professor of Mathematics
Washington University, St. Louis, Missouri

The success of the first edition of the book encouraged me to produce this
second edition. I have taken this opportunity to provide proofs of many the-
orems, that had not been given in the first edition. Some additions and cor-
rections have also been included.

Since the publication of the first edition, I have received many communica-
tions from readers all over the world. It is my great pleasure to thank the fol-
lowing people for their comments, corrections and encouragements: Prof. Jim
Austin, Prof. Friedrich L. Bauer, Dr. Hassan Daghigh Dr. Deniz Deveci,
Mr. Rich Fearn, Prof. Martin Hellman, Prof. Zixin Hou, Mr. Waseem Hus-
sain, Dr. Gerard R. Maze, Dr. Paul Maguire, Dr. Helmut Meyn, Mr. Robert
Pargeter, Mr. Mok-Kong Shen, Dr. Peter Shiu, Prof. Jonathan P. Sorenson,
and Dr. David L. Stern. Special thanks must be given to Prof. Martin Hell-
man of Stanford University for writing the kind Foreword to this edition and
also for his helpful advice and kind guidance, to Dr. Hans Wéssner, Mr. Al-
fred Hofmann, Mrs. Ingeborg Mayer, Mrs. Ulrike Stricker, and Mr. Frank
Holzwarth of Springer-Verlag for their kind help and encouragements dur-
ing the preparation of this edition, and to Dr. Rodney Coleman, Prof. Glyn
James, Mr. Alexandros Papanikolaou, and Mr. Robert Pargeter for proof-
reading the final draft. Finally, I would like to thank Prof. Shiing-Shen Chern,



viii Preface to the Second Edition

Director Emeritus of the Mathematical Sciences Research Institute in Berke-
ley for his kind encouragements; this edition is dedicated to his 90th birthday!

Readers of the book are, of course, very welcome to communicate with
the author either by ordinary mail or by e-mail to s.yan@aston.ac.uk, so
that your corrections, comments and suggestions can be incorporated into a
future edition.

Birmingham, February 2002 S.Y. Y.



Preface to the First Edition

Mathematicians do not study objects, but relations among objects; they are
indifferent to the replacement of objects by others as long as relations do
not change. Matter is not important, only form interests them.

HENRI POINCARE (1854-1912)

Computer scientists working on algorithms for factorization would be well

advised to brush up on their number theory.
IAN STEWART
Geometry Finds Factor Fast

Nature, Vol. 325, 15 January 1987, page 199

The theory of numbers, in mathematics, is primarily the theory of the prop-
erties of integers (i.e., the whole numbers), particularly the positive integers.
For example, Euclid proved 2000 years ago in his Elements that there ex-
ist infinitely many prime numbers. The subject had long been considered as
the purest branch of mathematics, with very few applications to other ar-
eas. However, recent years have seen considerable increase in interest in sev-
eral central topics of number theory, precisely because of their importance
and applications in other areas, particularly in computing and information
technology. Today, number theory has been applied to such diverse areas as
physics, chemistry, acoustics, biology, computing, coding and cryptography,
digital communications, graphics design, and even music and business!. In
particular, congruence theory has been used in constructing perpetual calen-
dars, scheduling round-robin tournaments, splicing telephone cables, devising
systematic methods for storing computer files, constructing magic squares,
generating random numbers, producing highly secure and reliable encryption
schemes and even designing high-speed (residue) computers. It is specifically
worthwhile pointing out that computers are basically finite machines; they

! In his paper [96] in the International Business Week, 20 June 1994, pp. 62-64,
Fred Guterl wrote: “Number Theory, once the esoteric study of what happens
when whole numbers are manipulated in various ways, is becoming a vital prac-
tical science that is helping solve tough business problems”.



Preface to the First Edition

have finite storage, can only deal with numbers of some finite length and can
only perform essentially finite steps of computation. Because of such limita-
tions, congruence arithmetic is particularly useful in computer hardware and
software design.

This book takes the reader on a journey, starting at elementary number
theory, going through algorithmic and computational number theory, and
finally finishing at applied number theory in computing science. It is divided
into three distinct parts:

(1) Elementary Number Theory,
(2) Computational/Algorithmic Number Theory,
(3) Applied Number Theory in Computing and Cryptography.

The first part is mainly concerned with the basic concepts and results of divis-
ibility theory, congruence theory, continued fractions, Diophantine equations
and elliptic curves. A novel feature of this part is that it contains an ac-
count of elliptic curves, which is not normally provided by an elementary
number theory book. The second part provides a brief introduction to the
basic concepts of algorithms and complexity, and introduces some important
and widely used algorithms in computational number theory, particularly
those for primality testing, integer factorization, discrete logarithms, and el-
liptic curve discrete logarithms. An important feature of this part is that
it contains a section on quantum algorithms for integer factorization and
discrete logarithms, which cannot be easily found, so far, in other texts on
computational /algorithmic number theory. This part finishes with sections
on algorithms for computing n(z), for finding amicable pairs, for verifying
Goldbach’s conjecture, and for finding perfect and amicable numbers. The
third part of the book discusses some novel applications of elementary and
computational number theory in computing and information technology, par-
ticularly in cryptography and information security; it covers a wide range of
topics such as secure communications, information systems security, com-
puter organisations and design, error detections and corrections, hash func-
tion design, and random number generation. Throughout the book we follow
the style “Definition-Theorem-Algorithm-Example” to present our material,
rather than the traditional Hardy—Wright “Definition-Theorem-Proof” style
[100], although we do give proofs to most of the theorems. We believe this is
the most suitable way to present mathematical material to computing profes-
sionals. As Donald Knuth [121] pointed out in 1974; “It has often been said
that a person does not really understand something until he teaches it to
someone else. Actually a person does not really understand something until
he can teach it to a computer.” The author strongly recommends readers
to implement all the algorithms and methods introduced in this book on a
computer using a mathematics (computer algebra) system such as Maple in
order to get a better understanding of the ideas behind the algorithms and
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methods. A small number of exercises is also provided in some sections, and
it is worthwhile trying all of them.

The book is intended to be self-contained with no previous knowledge
of number theory and abstract algebra assumed, although some familiarity
with first-year undergraduate mathematics will be helpful. The book is suit-
able either as a text for an undergraduate/postgraduate course in Number
Theory/Mathematics for Computing/Cryptography, or as a basic reference
researchers in the field.
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Notation

All notation should be as simple as the nature of the operations to which

it is applied.

CHARLES BABBAGE (1791-1871)

Notation Explanation

N set of natural numbers: N = {1,2,3,---}

Z set of integers (whole numbers): Z = {0, +n : n € N}

Z* set of positive integers: ZT = N

Z sy set of positive integers greater than 1:
Zsi={n:n€Zandn>1}

Q set of rational numbers: Q = {% ta,beZand b # 0}

R set of real numbers:
R = {n+0.d1d2d3~~ :n€Z, d; € {0,1,"' ,9}
and no infinite sequence of 9's appears}

C set of complex numbers:
C={a+bi:a,beRandi=+-1}

Z|nZ also denoted by Z,, residue classes modulo n;
a ring of integers; a field if n is prime

(Z nZ)* multiplicative group; the elements of this group are the
elements in Z /nZ that are relatively prime to n:
(Z/nZ)* = {la]n € Z/nZ: ged(a,n) = 1}.

F, finite field with p elements, where p is a prime number

F, finite field with ¢ = p* a prime power

K (arbitrary) field

R ring



xviii Notation

g group
|G| order of group G
B, Bernoulli numbers:
( "’1"1 )B"+-~+ ( ":1 )Bl+Bo=0

Fermat numbers: F,, =22" +1, n >0

Mersenne primes:
M, = 2P — 1 is prime whenever p is prime

square root of z

kth root of =

asymptotic equality
approximate equality
infinity

implication

equivalence

blank symbol; end of proof

space

é:cmﬁﬂgnl§§| s

probability measure

|S| cardinality of set S

€ member of

C proper subset

C subset

*, % binary operations

e binary operation (addition); exclusive or (XOR)

® binary operation (multiplication)

f(z) ~ g(z) f(z) and g(z) are asymptotically equal

(G,*) = (H,x) (G,*) and (H,*) are isomorphic

1 undefined

ek encryption key

dy decryption key

E. (M) encryption process C' = E,, (M),
where M is the plaintext

Dy, (C) decryption process M = Dy, (C),

where C is the ciphertext



Notation xix
f(x) function of z
ft inverse of f

i=1

i=1

n!

kP

Og

e

log, =
log

Inz
exp(z)

alb
atb

P |ln
ged(a, b)
lem(a, b)
Ed

[z]

z mod n

z =y modn
z =y (mod n)
z #Zy (mod n)

binomial coefficient

integration

T dt

logarithmic integral: Li(z) = —

sum: ] +ITo + -+ Ty

product: z;x5---Tp

factorial: n(n — 1)(n —2)---3-2-1

z to the power k

kP=P&P®---® P, where P is a point (z,y) on
S S

k summands Y
an elliptic curve E: y> = 2% +az + b

the point at infinity on an elliptic curve E over a field

1
the transcendental number e = 3~ — ~ 2.7182818
n>0 n.

logarithm of z to the base b (b # 1): z = bl%8*
binary logarithm: log, =
natural logarithm: log, z
exponential of z: e* = 5 x—r:
n>o0 ™!
a divides b
a does not divide b
p® | n but p>*t {n
greatest common divisor of (a,b)
least conmon multiple of (a, b)
the greatest integer less than or equal to x

the least integer greater than or equal to z
: T
remainder: £ —n [—J
n
z is equal to y reduced to modulo n

T is congruent to y modulo n

T is not congruent to ¥ modulo n



Notation

XX
[a]n residue class of a modulo n
+n addition modulo n
—n subtraction modulo n
‘n multiplication modulo n
z*¥ mod n x to the power k modulo n
kP mod n kP modulo n
ord,(a) order of an integer a modulo n;

also denoted by ord(a,n)
indy na index of a to the base g modulo n;

also denoted by indya whenever n is fixed
m(z) number of primes less than or equal to z:

m(x)= > 1

p<=
P prime
7(n) number of positive divisors of n: 7(n) = " 1
d|n
o(n) sum of positive divisors of n: o(n) = 3 d
d|n
s(n) sum of proper divisors of n: s(n) = a(n) —n
o(n) Euler’s totient function: ¢(n) = 3. 1
gcg(s:.:)';l
A(n) Carmichael’s function:
k
A(n) = lem (A(p7" )A(P3?) --- A(p*)) if n = _I—Ilp?"
=
u(n) Moébius function
o0
¢(s) Riemann zeta-function: {(s) = i,,
n

K(k)n
K(k),

n=1
where s is a complex variable

Legendre symbol, where p is prime

Jacobi symbol, where n is composite

set of all quadratic residues of n

set of all quadratic nonresidues of n
a

X {a € (Z/nZ)" : (;) - 1}
set of all pseudosquares of n: Q, = J, — Q,
set of all kth power residues of n, where k > 2

set of all kth power nonresidues of n, where k > 2



Notation xxi

(90, 91,92, - ,qn] finite simple continued fraction

Ck = 55’: k-th convergent of a continued fraction

(90,q1,92, - -] infinite simple continued fraction

(90,91, » Qs Ter 1> Ghr2s - 5 Gktm)
periodic simple continued fraction

P class of problems solvable in deterministic
polynomial time

NP class of problems solvable in nondeterministic
polynomial time

RP class of problems solvable in random polynomial
time with one-sided errors

BPP class of problems solvable in random polynomial
time with two-sided errors

ZPP class of problems solvable in random polynomial
time with zero errors

o() upper bound: f(n) = O(g(n)) if there exists some
constant ¢ > 0 such that f(n) <c-g(n)

o(-) upper bound that is not asymptotically tight:
f(n) = O(g(n)), Ye > 0 such that f(n) < c-g(n)

() low bound: f(n) = £2(g(n)) if there exists a
constant ¢ such that f(n) > % -g(n)

o) tight bound: f(n) = O(n) if f(n) = O(g(n))
and f(n) = 2(g(n))

O(N*) polynomial-time complexity measured in terms of

arithmetic operations, where £ > 0 is a constant

O ((log N)*) polynomial-time complexity measured in terms of
bit operations, where k£ > 0 is a constant

O ((log N)clog V) superpolynomial complexity, where ¢ > 0 is a constant

O (exp (cy/log Nloglog N ))

subexponential complexity,
O (exp (cy/Tog Nloglog N )) = O (NCV log log N/ l°3N)
O (exp(z)) exponential complexity, sometimes denoted by O (e%)

O (N°¢) exponential complexity measured in terms of
bit operations; O (N€) = O (2¢08 V),
where € > 0 is a constant

CFRAC Continued FRACtion method (for factoring)

ECM Elliptic Curve Method (for factoring)



xxii Notation

NFS Number Field Sieve (for factoring)

QS/MPQS Quadratic Sieve/Multiple Polynomial Quadratic
Sieve (for factoring)

ECPP Elliptic Curve Primality Proving

DES Data Encryption Standard

AES Advanced Encryption Standard

DSA Digital Signature Algorithm

DSS Digital Signature Standard

RSA Rivest-Shamir-Adleman

WWWwW World Wide Web



