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Preface

This book is a continuation of Volume I of the same title [Grund-
lehren der mathematischen Wissenschaften, Band 115]. We constantly
cite definitions and results from Volume I.! The textbook Real and
abstract analysis by E. HEwITT and K. R. STROMBERG [Berlin - Gottin-
gen - Heidelberg: Springer-Verlag 1965], which appeared between the
publication of the two volumes of this work, contains many standard
facts from analysis. We use this book as a convenient reference for such
facts, and denote it in the text by RAAA. Most readers will have only
occasional need actually to read in RAAA.

Our goal in this volume is to present the most important parts of
harmonic analysis on compact groups and on locally compact Abelian
groups. We deal with general locally compact groups only where they
are the natural setting for what we are considering, or where one or
another group provides a useful counterexample. Readers who are
interested only in compact groups may read as follows: § 27, Appendix D,
§§ 28 —30 [omitting subheads (30.6) —(30.60) if desired], (31.22) —(31.25),
§§ 32, 34—38, 44. Readers who are interested only in locally compact
Abelian groups may read as follows: §§ 31 —33, 39—42, selected Mis-
cellaneous Theorems and Examples in §§ 34—38. For all readers, § 43
is interesting but optional.

Obviously we have not been able to cover all of harmonic analysis.
The field, already immense, is growing rapidly at the present day. We
were limited by space, by time, by our own abilities. We have presented
the parts of the subject that every harmonic analyst must know: rep-
resentations of compact groups; the WEYL-PETER theorem; PLAN-
CHEREL'S theorem: WIENER'S Tauberian theorem. Beyond this, we
have been guided largely by personal inclination. As the writing pro-
gressed, one question led naturally to another.

We have omitted special topics that are not needed for our main
goals and that are treated in other monographs: Rupin [10]; R. E.
EpwaARDs (7], [10]; KATzNELSON [3]; KAHANE and SALEM [3]; MAURIN
[1]. We regret not having presented any Lie theory beyond the rudi-
mentary facts set down in § 29. Plainly a detailed description of the
continuous unitary irreducible representations of the classical compact

1 An exception is the Bibliography: every work cited in Vol. II is listed at the
end of Vol. II.
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groups, going beyond e.g. BOERNER [1], and of the decompositions of
their tensor products, would be of immense value for noncommutative
harmonic analysis. The time seems not yet ripe for such an enterprise.
A larger omission is our failure to study the algebra M(G) [G a compact
or locally compact Abelian group]. This algebra presents many riddles,
but enough is known for a full-scale treatment to be appropriate.

We could not have written this book without help. We are deeply
grateful for the generous assistance offered by our friends. Valuable
advice has been received from ROBERT B. BURCKEL, CLIFFORD V.
Comisky, Raour Doss, RoBERT E. EDwARDS, LEe W.ERLEBACH,
J. M. G. FELL, FraNz vON KRBEK, A. JEANNE LADUKE, HORST LEPTIN,
GEORGE W. Mackey, JoHN R. MCMuLLEN, WILLARD A. PARKER,
RiCHARD S. PIERCE, ROGER W. RICHARDSON, KARL R. STROMBERG,
Tuomas A. SwANsON, EUGENE P. WIGNER, and JoHN H. WILL1IAMSON.
Significant contributions to the final form of the monograph were made
by RICHARD ILTIs, BARRY E. JoHNsON, and DANIEL RIDER. Our special
thanks are due to HERBERT S. ZUCKERMAN, who has helped us far
more than anyone else.

We are grateful for support from the National Science Foundation
USA and the Alfred P. Sloan Jr. Foundation, and to the Universities
of Oregon and Washington for secretarial assistance and for release from
other duties, We are grateful to Springer-Verlag for their rapid and
meticulous production of the book.

Seattle, Washington EpwiN HEWITT
Eugene, Oregon KEeNNETH A. Ross

August 1969
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Chapter Seven

Representations and duality of compact groups

In this chapter, we attempt to do for compact [non-Abelian] groups
what we did in Chapter Six for locally compact Abelian groups. The
task is a formidable one, and as the reader will see we do not give nearly
so much detail about compact groups as we did for locally compact
Abelian groups. A basic tool in our study is the WEYL-PETER theorem
(27.40), which is the central object of § 27. In § 28, we apply representa-
tions of compact groups in several directions and also explore some
interesting byways. In § 29, we study the unitary groups and present
all the unitary representations of 11(2) and ©(3). Duality for compact
groups is taken up in § 30.

§ 27. Unitary representations of compact groups

Like characters of a locally compact Abelian group, continuous
unitary irreducible representations of a compact group? are the essential
tool both for analyzing the structure of the group and for studying
spaces and algebras of functions and measures defined on the group. In
this section we prove a number of important facts about these representa-
tions. As usual, we begin with some definitions.

(27.1) Definition. Let S be a semigroup [not necessarily topological].
For a reflexive complex Banach space E, E™ denotes the linear space
of all bounded conjugate-linear functionals on E as defined in (22.1). Let
E and E’ be reflexive complex Banach spaces, and let ¥V and V' be
representations of S by bounded operators on E~ and E’~ respectively.
A bounded linear transformation 7" carrying E~ into E’~ is called an
intertwining transformation if

() V,T=T¥,

for all xeS. The set of all intertwining transformations for V and V' is
denoted by the symbol J(V, V). It is easy to see that J(V, V') is a

! Throughout this volume, we use the term ‘‘compact group'’ to mean exactly
what the term says: a compact topological group that may or may not be Abelian.
However, we will always have our eye on the non-Abelian case. From this point
of view, compact Abelian groups are especially simple examples of compact groups.

Hewitt and Ross, Abstract harmonic analysis, vol. IT 1



2 Chapter VII. Representations and duality of compact groups

closed linear subspace of the Banach space (E™, E'™) consisting of all
bounded linear transformations of E™ into E’™.!

If §(V, V') contains a linear isometry (B.42) of E™ onto E'~, then
V and V' are called equivalent representations of S and we write V ~ V'
[this definition is consistent with that of (21.8)].

(27.2) Note. If V and V' are equivalent representations of G by
unitary operators on Hilbert spaces H and H’, and if T is an isometry
in J(V, V'), then T also preserves inner products: {T¢&, Tn>= (&, )
for all &, ne H. This is pointed out in (B.43).

(27.3) Definition. Let G be a locally compact group. Let #%(G) be
the set of all continuous irreducible unitary representations U of G.?
Equivalence as defined in (27.1) is an equivalence relation in #%(G),
and it defines in the usual way the set of all equivalence classes of rep-
resentations U. We denote this set by the symbol Z and refer to it as
the dual object of G. Thus each g¢X is a set of representations of G and
consists of all representations that are equivalent to some fixed rep-
resentation. We frequently write U' for a representation in the set o.

(27.4) Remarks. (a) If G is locally compact and Abelian, then Z is
to be identified with the character group X of G, just as in (22.16.b). Two
continuous characters of G are equivalent as representations if and only
if they are equal. Thus each ¢¢Z contains exactly one element. The
algebras M (G) and £, (), and the function spaces £, (G) (1 <p < ), are
studied largely in terms of the behavior of Fourier-Stieltjes and Fourier
transforms [see (23.9)], ¢.e., in terms of their “decompositions’’ with
respect to irreducible representations of G.

(b) The present chapter is concerned with compact, not necessarily
Abelian, groups, for which the situation is in some respects more compli-
cated but in most respects simpler than for noncompact locally compact
Abelian groups. Complications arise because not all representations in
% (G) are 1-dimensional if G is non-Abelian. However all representations

LForT,, T,eB(E™. E'™), and @€E™, we define (T, + T}) (w) = T, (w) 4 T,(w);
« T is defined analogously for a€ K. The norm || T|| is defined in (B.8). With these
definitions, B (E~, E’7) is evidently a complex Banach space.

2 There is a possible cardinal number paradox involved here, which we elude as
follows. For a fixed group G, there is an upper bound m for the cardinal numbers of
the Hilbert spaces on which G can act irreducibly. There is obviously a set # of
Hilbert spaces containing a Hilbert space of each cardinal =m, and closed under
the formation of subspaces, finite direct sums (B.61) and tensor products (D.14).
Limiting ourselves to representations of G by operators on spaces H in 5, we plainly
obtain a set % (G). The exact details are of little interest for the purposes of the
present hook.



§27. Unitary representations of compact groups 3

in % (G) are finite-dimensional if G is compact (22.13)?, and so elementary
algebra can be applied to their study. The end result is a nearly complete
structure theory for subalgebras of M, (G) for a compact group G. We
will point out at appropriate places the exact réle played by compactness
in this theory.

(c) We use the symbol Z in the non-Abelian case instead of X to
emphasize that we are dealing with an object that is not a group. For
compact non-Abelian groups G, Z admits two operations of an algebraic
character, which are very useful in studying G. However, Z does not
form a group under these operations; see (27.51). The first of these
operations is defined in (27.27), the second in (27.35).

(27.5) Notation and remarks. (a) For a compact group G and a fixed
g€Z, it is obvious that all U@¢g operate on Hilbert spaces of the same
finite dimension. We reserve the symbol d, for the dimension of these
representation spaces. Thus 4, is a positive integer.

(b) Like every semigroup, a compact group G has a trivial 1-dimen-
sional representation, namely the character identically equal to 1. We
call this the identity representation of G, and we denote it by the symbol 1.
Like all 1-dimensional representations of a semigroup, 1 is the only
representation of G in its equivalence class.

(c) Let o be any element of Z, let U be in ¢, and let {{;, &y, ..., {4}
be a fixed but arbitrary orthonormal basis in the representation space
H, of UY. Forj, ke{1, 2, ..., d,}, let u{3 be the function on G defined by

ufy () =<UP &, 8
for x€G. The functions #} are called the coordinate functions for U ca
and the basis {{;, ;. ...,Cda}. Note that (47 (x))f4,.., is the matrix of the
operator U” in this basis.
(d) Let V be an arbitrary finite-dimensional representation of an
arbitrary semigroup S, with representation space H. Let {¢;, &,, ..., £}
be any basis in H. Write

d
ORARDINOLE

thus (v;,(x))§4=1 is the matrix corresponding to the operator ¥, in the
basis {51. &, ..., &4} Since V, —-V V, for all %, yeS, we have

(1) Z”n (xy) §,= Vf;.)—Zvn(y é,
=% Zoan@ b= 2 (S mo)e,

r=1 s=1

1 The requirement that U in % (G) be unitary amounts merely to imposing a
certain inner product on the representation space of U. In fact, let V be any con-
tinuous representation of G by operators on the linear space K. Then (22.23.a)
implies that V is unitary and continuous under an appropriate inner product on K4,

‘.
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From (ii), we infer the evident fact that

d
(i) v;y(xy) = gv,'.(x) v (¥)-

That is, the mapping x— (v,,(x))f 4., is a representation of the semi-
group S by matrices.

(e) Retaining the notation of (d), suppose that S is a group and that
the operators V, are unitary. Then we have

<Vr! Ek' £j> = <V:1 Vr' fk- sz,)
= <5u fo;’)

= <I/g 6"! Ek) (]
that is,

(iv) v (27Y) =13 (%).

In view of (iii), (iv) simply asserts that (z,r,-,,‘(:r));?‘.,,_1 is a unitary matrix.
Both (iii) and (iv) will be useful in the sequel, in dealing with coordinate
functions 3.

(f) Let G be a compact group and let V' be any continuous unitary
representation of G, with representation space H. For every pair of
vectors &, ne H, the function x—<V, & ) is continuous on G (22.2).
Hence this function is in &,(G) [recall that A(G)=1]. Whenever it is
convenient to do so, we will regard &, (G) as a subset of M(G), as in
(19.18). Thus functions x—(V, £, ) are associated with measures in
M (G), may be convolved with each other and with arbitrary measures in
M (G), and so on.

Throughout (27.6)—(27.42) and (27.44) —(27.46), G will denote a
fixed but arbitrary compact group, and X will denote the dual object
of G.

(27.6) Discussion. Let U™ and U® be equivalent representations
in % (G), with representation spaces H, and H,. Let A be a linear isom-
etry of H, onto H, that is intertwining for U™ and U®. For arbitrary
&, meH, and x€G, we have

<Uxm &My =<4 UP) &, An) = <UP) A&, Anyd.

This shows that every function on G having the form

x_)<U‘(’l) &L, (1)
where &, 7, € H,, also has the form
x—>CUB £, np), (2)

where &,, 77,€ H,. Similarly, every function of the form (2) also has the
form (1). Thus the family of functions having the form (1) depends only
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upon the equivalence class to which U™ belongs. This observation shows
that the next definition is a proper one.

(27.7) Definition. For ¢ in X, we define T,(G) as follows. For U
in o, with representation space H,, T,(G) is the set of all finite complex
linear combinations of functions of the form

x->CUP €, n>

as £, n vary over H,. For a subset P of Z, we write Tp(G) for the smallest
linear space of functions containing lZ'p %, (G). We write T3(G) simply
ag

as T(G). Functions in T (G) are called trigonometric polynomials [on G].

Note that T (G) C€(G), since the representations U'®) are continuous.
The term ““trigonometric polynomial™ is justified by the special case
G=T. Here the functions x—(U, &, n) all have the form exp(it)—>

»
a exp(int) (23.27.a), and T(7T) consists of all functions ), «, exp (:k¢),
A=—n
i.e., of all trigonometric polynomials in the ordinary sense. Note also
that if G is Abelian, then & (G) is the set of all linear combinations of
continuous characters of G. Functions in ¥ (G) are also called representa-

tive functions by some writers.

(27.8) Remarks. (a) For U”¢oeZ, let {{;,{,, ..., {4} be an ortho-
normal basis in the representation space H, of U, It is easy to see
that %, (G) is the smallest linear subspace of €(G) that contains the co-
ordinate functions «{} for U'” and this basis (7, k€{1, 2, ..., 4,}). Like-
wise, for PCZ, %p(G) is the smallest linear subspace of €(G) that
contains all the coordinate functions u,(‘;’ as ¢ varies over P.

(b) The function spaces &, (G) and Tp(G), where gcZ and P Z, are
left and right translation invariant subspaces of €(G). [It suffices to
observe that if / has the form f(x) = (U, £, ), then ,f and /, also have
this form. Indeed, we have

fa(%) = U &, 9> = CU(U, §), p>
o (%) =<0 &> =< & Upamd ]

(c) As pointed out in (23.19), continuous characters of G form an
orthonormal set in £,(G). If G is Abelian, ¥ (G) is uniformly dense in
€(G), as shown in (23.20), and it follows from (12.10) that X is a complete
orthonormal set in £, (G). Analogous facts hold in the non-Abelian case.
The WEYL-PETER theorem [(27.40) inmfra] states that the functions
@3 ufj), as o varies over all of %, form a complete orthonormal set in
£4(G). As in the Abelian case, the orthogonality relations can be proved
without recourse tg the fact that ¥ (G) is uniformly dense in €(G). We
will establish these relations before setting up the machinery needed to

and
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prove [in (27.39)] that T (G) is dense in €(G). We begin with some simple
algebraic facts.

(27.9) Theorem [SCHUR'S lemma]. Let F be an arbitrary field. Let
E ; be a vector space over F, and let M, be an irreducible set of linear operators
on E;(j=1, 2).! Suppose that there is a linear transformation A carrying
E, into E, such that Ao My =Myo A. Then either A s the zero trans-
formation or A is a one-to-one transformation carrying E, onto E,.

Proof. Consider the linear subspace 4 (E,) of E,. For M,cM,, choose
M, e M, such that Ao M, =M,o0A. Then we have

M, (A(E) =M,o A(E)) = (Ao My) (E,) = A (M, (E))) CA(E). (1)

Thus A(E,) is a subspace of E, that is invariant under all operators in
M,, and since M, is by hypothesis irreducible, we see that A(E,) = {0} or
A(E,)=E,. The first possibility simply means that A =0. If 4 %0,
then A(E,)=E,. To show that A4 is one-to-one, we consider the set N
of x,< E, such that A(x;) =0. Clearly N is a linear subspace of E,, and
N #+E, since A +0, For M,¢M,, we have AoM;=M,04 for some
M,¢ M, and hence

A (M, (N)) = M,(A(N)) =M, ({o}) ={o}.
Thus M;(N)CN and N is a subspace of E; that is invariant under all

operators in IR,. Since M, is irreducible, N is equal to {0}, and so 4 is
one-to-one. [J

(27.10) Corollary. Let F be an algebraically closed field. Let E be a
finite-dimensional vector space over F and let M be an irreducible set of
linear operators on E. Let A be a linear operator on E such that AM = MA
Jor all Me M. Then A =al for some acF.

Proof. There is an acl” such that (4 —al)™! does not exist. For,
consider the function x—det(A —xI) mapping F into F. This is a
polynomial in x, and since I’ is algebraically closed it has a root a. For
this a we have det(4 —af) =0 and so (4 —al)™! does not exist?®. The
operator A —a/ has the property that (4 —al) M=M(4 —al). An
application of (27.9) shows that A —a/=0. []

We now apply (27.9) and (27.10) to unitary representations of our
compact group G.

(27.11) Discussion. Let U™ and U® be continuous unitary rep-
resentations of a compact group G, not necessarily irreducible or even

! By irreducible we mean here that no proper linear subspace of £, is invariant
under all operators in 9R;. See (21.26) for the definition if £ is a fopological linear
space.

3 This is a thoroughly elementary fact. See for example BIRKHOFF and MacL.AaNE
[1], Chap. X, Theorem 3.
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finite-dimensional. Let H;, with inner product ¢, »; and norm | |;, be
the representation space of U, We will always suppose that representa-
tion spaces for unitary representations are Hilbert spaces. Let B be a
bounded linear transformation mapping H, intc or onto H,. For £;cH;
(1=1, 2), define

(i) Ca(fl' Ez) =6[ <U;(ﬂ BU?) 51. 52)3 dx.

Here the integral is with respect to normalized Haar measure 4 on G:
recall that 1(G) =1 and that 4 is both right and left invariant [(15.9) and
(15.13)]. The integrand in (i) is continuous. To see this, write
|CUBBUD &, &5, — CUR BUP &, &),
S|CBUP &, U &y, — (BUP &, UfY £y,
+[<BUM &, U &)y — (BUP &, U &y
SIBI- ek 102 £~ U 6ol + 1B1- U9 £,— U b o
Then apply (22.8), remembering that U™ and U® are continuous rep-
resentations. Hence the integral in (i) exists and is a complex number.
The functional (&, &) —Cg(é;, &) is accordingly defined on H,><H,.
For fixed &, it is bounded, additive, and conjugate-linear as a function
of £,. By (B.45), there is for each fixed &, € H, an element #,¢€ H, such that
Cp(&y, &s) = (73, &30 for every &,eH,. Define the mapping Az by
Ap & =mn,, so that we have
(i) Cp(§1,&a) =<4p &1, Eads-
It is obvious that Ap is linear. Also Ay is bounded and |4z <|B],
since
145 & =In: 8 = Cp (1, me) Smax {|BUP & s : x€G)
< 1Bk 145 &:h-
The usefulness of the operators 45 depends upon the following fact.
(27.12) Theorem. Notation is as in (27.11). The linear transformation
Ap is an intertwining transformation for UM and U®:
(i) AgUP=UP A, for all yeG.
Proof. This follows at once from the right invariance of A:
<4g U}l) &, €a)e= f <UZ BUP U;n 1, 8309 dx
¢
=/[ <U,$’) U((x.})-' BUP,’ &, EDsdx= [ <U)('” UR BUME,, §3)g dx
¢ [
= f KA BUYM & U,‘,!l b adx=(4pt, Uy(!)‘ 39
¢
= <Uym Ap &y, Eads-
Since &; is arbitrary in H;, (i) is proved. []
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We need one more preliminary result.

(27.13) Theorem. For je{1, 2}, let UY be a unitary representation of
an arbitrary group G with representation space H;. Suppose that U™ is
irreducible and that there is a bounded linear space isomorphism A that
carries H, onto H, and is an intertwining transformation for UM and U™,
Then there is a positive real number f such that B A is a linear isometry
of Hy onto H,. Thus U™ and U™ are equivalent in the sense of (27.1).

Proof. It is clear that U™ is irreducible. Define the adjoint mapping
A~ of Hy onto H, through the relation

<A~§z:51>1=<52:A§1>2 (1)

for all §;cH; (j=1, 2). As in (27.11), the right side of (1) is conjugate-
linear and continuous in &, for each fixed &, and so has the form (»,, £,);;
we take A~ &, =#,. It is easy to see that 4™ is a bounded linear space
isomorphism of H, onto H,.

The transformation 4™ is intertwining for U® and U™. In fact:

UM A~ &, ED =A™ &, UNED, = (&, AUNED,
= <5z- U}f! A51>:= <U£’)5z' A£1>|= <A~ UP) fs' 51)1-

Here £; is arbitrary in H;, so that A~ U® = U4~ for all x¢G.

Now we have AAUN =A~UPA=UMA~A, ie., A~ A commutes
with all U". Clearly A~ A4 %0, and we apply (21.30) to infer that
A~ A =al for some nonzero complex number «. For &, #,€H,, the
foregoing yields

aléy, mrr=CAT AL, mo1= (A&, Any),. (1)

Let 7, =&, +0in (1); this implies that « is real and positive. Let f =a"#;
then (1) shows that 84 is an isometry of H, onto H,. [J
(27.14) Theorem. Notation is as in (27.11). Let U™ and U® be

trreducible. If there is a B for which the transformation Ag is nonzero,
then U and U™ are equivalent representations.

Proof. Both H, and H, are finite-dimensional. SCHUR’S lemma (27.9)
and (27.12) imply that Ay is a linear space isomorphism of H, onto H,;
(27.43) implies that 8 A is an intertwining linear isometry for a positive
real number 8. Thus U™ and U® are equivalent. [J

Theorem (27.14) contains the essentials of the orthogonality relations
for functions in ¥ (G), which we now describe.

(27.15) Theorem. Let 0, and o, be distinct elements in Z, and let f;
be a function in T, (G) (1=1, 2). Then

() S hladr=o0.
G
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Proof. We select U in ¢, and U™ in o, and use the notation of
(27.41). Choose orthonormal bases {{;y, ..., {;4} in H; (j =1, 2). Linearity
shows that (i) will be established as soon as we prove that

Gf <U£1)C1;:Cu>x<Ush Ca1:LamPe @2 =0 (1)

forj, k=1,...,dyand [, m=1, ..., dy. Theorem (27.14) shows that the
function Cg(&;, &;) of (27.41.1) is zero for all §;¢ H;, regardless of what
linear transformation B is chosen. Fix indices 7, k€{1, 2, ...,d,} and
},me{1,2,...,d;}. Let B be the linear transformation such that
B(Ly) =Camand B(L,,)=0for7e{1,2,...,k—1,k+1, ..., d;}. We then
have

d, d,
(BUL Gy, UNEade= (3, CUP L B b 3 UM Laraads ),

=1

4 d,
= Z Z <U£1)Cli'Clr>1<Us Cﬂh 2s I<BC1HC2:>2

r=1 s=1
4, d, T
= 21 ’§1<UP) le. Clr)l <Ux’ Cu» Ch): 6n ams

= <U.$l) Cl;'l c1h>l (Usz C!h C2m>l'

Thus the integrand in (1) has the form of an integrand in (27.11.i), and
as remarked above, this proves (1). []

In describing the orthogonality relations for equivalent representa-
tions, it is convenient to consider first a single representation.

(27.16) Lemma. Let U be a continuous irreducible unitary representa-
tion of G with d-dimensional representation space H. Let B be any linear
operator on H. Then the operator Ag defined in (27.11) is equaltod-'tr (B)-1.

Proof. The operator Ay isanintertwining operatorfor U: A U,= U, 4,
for all xeG. Since U is irreducible, (21.30) or (27.10) implies that
Ag=uagl, where age K. Let {{;, s, ..., {} be any orthonormal basis in H.
Corollary (D.418) shows that

tr(B) =3, (B0
For each x€G, we have
t¢(B) =t (U, (U B) = tr (U~ BU)
= 5 (U~ BUL, L= 5, (BUL, UL,

r=1 r=1

(1)



