O'REILLY"

Data Structures
& Algorithms
with JavaScript

JavaScripthHIEIEEHS &k (2R

% K% iRt Michael McMillan Z

JavaScript A BB S M5 &EiE won

Data Structures and Algorithms
with JavaScript

Michael McMillan &

Beijing - Cambridge - Farnham - Koln - Sebastopol - Tokyo [K@AR{=INNES

O’Reilly Media, Inc. A& # K 5 h piAt 4 ik

MR REAFHR

B B £ 4 B (CIP)& iE

JavaScript WY B 458 Sk B8 S/ (38 oK
2% (Michael, M) #. —S2ENR, — B L. A Ko Hh iR
#1.,20152

45 44 J5L 3 Data Structures and Algorithms with

JavaScript
ISBN 978 -7 5641 — 5345 8

[.DJ NI.O% .DOIAVA IS #FF
wit—3Ex V. OTP312

op [A PR AR CIP i 4% 7 (20140 25 273736 5

VLI MBS S ERLA R BE

[%5%:10- 2014 153 %5

© 2014 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2015. Authorized reprint of the original English edition, 2014 O Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3 3 ol O'Reilly Media, Inc. g i 2014,

F SR Ay RS R th R 2015, b P RR 4G th R AR A B A B s iRAR Ao 45 AR AR 69 BT AT
O'Reilly Media, Inc.697F 7T,

FRAR PR AT « R AF 4 @03 T « A 5 69 4EAT 35 5 o 2 30 R AF AT K)

JavaScripit H*)85 2% K -5 5k G2 EDRRD

AT« A K2 A

My hk: EIPURERE 25 MR 210096
oM A T

™ ik https/www.seupress.com

W, F 34 . press@seupress.com

BD e N R S B BR A
P AR BTEAXROEK 16 TFA
Bl gk 155

TR 34 TF

BR WK 20154F 2 HEB 1R

B WK 20154 2 HE 1 KEDRI

45 5. ISBN 978~ 7- 5641 - 53458
& 4800 G

AL 345 ATED R W DR i P S BRI R . LIS (4 50+ 025 - 83791830

Preface

Over the past few years, JavaScript has been used more and more as a server-side com-
puter programming language owing to platforms such as Node.js and SpiderMonkey.
Now that JavaScript programming is moving out of the browser, programmers will find
they need to use many of the tools provided by more conventional languages, such as
C++ and Java. Among these tools are classic data structures such as linked lists, stacks,
queues, and graphs, as well as classic algorithms for sorting and searching data. This
book discusses how to implement these data structures and algorithms for server-side
JavaScript programming.

JavaScript programmers will find this book useful because it discusses how to implement
data structures and algorithms within the constraints that JavaScript places them, such
as arrays that are really objects, overly global variables, and a prototype-based object
system. JavaScript has an unfair reputation as a “bad” programming language, but this
book demonstrates how you can use JavaScript to develop efficient and effective data
structures and algorithms using the language’s “good parts”

Why Study Data Structures and Algorithms

I am assuming that many of you reading this book do not have a formal education in
computer science. If you do, then you already know why studying data structures and
algorithms is important. If you do not have a degree in computer science or haven't
studied these topics formally, you should read this section.

The computer scientist Nicklaus Wirth wrote a computer programming textbook titled
Algorithms + Data Structures = Programs (Prentice-Hall). That title is the essence of
computer programming. Any computer program that goes beyond the trivial “Hello,
world!” will usually require some type of structure to manage the data the program is
written to manipulate, along with one or more algorithms for translating the data from
its input form to its output form.

For many programmers who didn't study computer science in school, the only data
structure they are familiar with is the array. Arrays are great for some problems, but for -
many complex problems, they are simply not sophisticated enough. Most experienced
programmers will admit that for many programming problems, once they come up with
the proper data structure, the algorithms needed to solve the problem are easier to design
and implement.

An example of a data structure that leads to efficient algorithms is the binary search tree
(BST). A binary search tree is designed so that it is easy to find the minimum and
maximum values of a set of data, yielding an algorithm that is more efficient than the
best search algorithms available. Programmers unfamiliar with BSTs will instead prob-
ably use a simpler data structure that ends up being less efficient.

Studying algorithms is important because there is always more than one algorithm that
can be used to solve a problem, and knowing which ones are the most efficient is im-
portant for the productive programmer. For example, there are at legst six or seven ways
to sort a list of data, but knowing that the Quicksort algorithm is more efficient than
the selection sort algorithm will lead to a much more efficient sorting process. Or that
it’s fairly easy to implement a sequential or linear search algorithm for a list of data, but
knowing that the binary sort algorithm can sometimes be twice as efficient as the se-
quential search will lead to a better program.

The comprehensive study of data structures and algorithms teaches you not only which
data structures and which algorithms are the most efficient, but you also learn how to
decide which data structures and which algorithms are the most appropriate for the
problem at hand. There will often be trade-offs involved when writing a program, es-
pecially in the JavaScript environment, and knowing the ins and outs of the various data
structures and algorithms covered in this book will help you make the proper decision
for any particular programming problem you are trying to solve.

What You Need for This Book

The programming environment we use in this book is the JavaScript shell based on
the SpiderMonkey JavaScript engine. Chapter 1 provides instructions on downloading
the shell for your environment. Other shells will work as well, such as the Node.js Java-
Script shell, though you will have to make some translations for the programs in the
book to work in Node. Other than the shell, the only thing you need is a text editor for
writing your JavaScript programs.

x | Preface

Organization of the Book

o Chapter 1 presents an overview of the JavaScript language, or at least the features
ofthe JavaScriptlanguage used in this book. This chapter also demonstrates through
use the programming style used throughout the other chapters.

» Chapter 2 discusses the most common data structure in computer programming:
the array, which is native to JavaScript.

» Chapter 3 introduces the first implemented data structure: the list.

« Chapter 4 covers the stack data structure. Stacks are used throughout computer
science in both compiler and operating system implementations.

« Chapter 5 discusses queue data structures. Queues are an abstraction of the lines
youstandin atabank or the grocery store. Queues are used extensively in simulation
software where data has to be lined up before it is processed.

» Chapter 6 covers Linked lists. A linked list is a modification of the list data structure,
where each element is a separate object linked to the objects on either side of it.
Linked lists are efficient when you need to perform multiple insertions and dele-
tions in your program.

« Chapter 7 demonstrates how to build and use dictionaries, which are data structures
that store data as key-value pairs.

« One way to implement a dictionary is to use a hash table, and Chapter 8 discusses
how to build hash tables and the hash algorithms that are used to store data in the
table.

o Chapter 9 covers the set data structure. Sets are often not covered in data structure
books, but they can be useful for storing data that is not supposed to have duplicates
in the data set.

« Binary trees and binary search trees are the subject of Chapter 10. As mentioned
earlier, binary search trees are useful for storing data that needs to be stored orig-
inally in sorted form.

« Chapter 11 covers graphs and graph algorithms. Graphs are used to represent data
such as the nodes of a computer network or the cities on a map.

« Chapter 12 moves from data structures to algorithms and discusses various algo-
rithms for sorting data, including both simple sorting algorithms that are easy to
implement but are not efficient for large data sets, and more complex algorithms
that are appropriate for larger data sets.

« Chapter 13 also coversalgorithms, this time searching algorithms such as sequential
search and binary search.

« The last chapter of the book, Chapter 14, discusses a couple more advanced algo-
rithms for working with data—dynamic programming and greedy algorithms.

Preface | xi

These algorithms are useful for solving hard problems where a more traditional
algorithm is either too slow or too hard to implement. We examine some classic
problems for both dynamic programming and greedy algorithms in the chapter.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,

statements, and keywords.
y
Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/data_structures_and_algorithms_using_javascript.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Data Structures and Algorithms Using Java-
Script by Michael McMillian (O'Reilly). Copyright 2014 Michael McMillan,
978-1-449-36493-9”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

xi | Preface

Safari® Books Online

s Safari Books Online is an on-demand digital library that
Safa rl delivers expert content in both book and video form from

BooksOnline the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

1

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/data_structures_algorithms_JS.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xiii

Acknowledgments

There are always lots of people to thank when you've finished writing a book. I'd like to
thank my acquisition editor, Simon St. Laurent, for believing in this book and getting
me started writing it. Meghan Blanchette worked hard to keep me on schedule, and if
I went off schedule, it definitely wasn’t her fault. Brian MacDonald worked extremely
hard to make this book as understandable as possible, and he helped make several parts
of the text much clearer than I had written them originally. I also want to thank my
technical reviewers for reading all the text as well as the code, and for pointing out places
where both my prose and my code needed to be clearer. My colleague and illustrator,
Cynthia Fehrenbach, did an outstanding job translating my chicken scratchings into
crisp, clear illustrations, and she deserves extra praise for her willingness to redraw
several illustrations at the very last minute. Finally, I'd like to thank all the people at
Mozilla for designing an excellent JavaScript engine and shell and writing some excellent

documentation for using both the language and the shell. \

xiv | Preface

Preface

1.

Table of Contents

The JavaScript Programming Environment and Model.................

The JavaScript Environment
JavaScript Programming Practices
Declaring and Initializing Variables
Arithmetic and Math Library Functions in JavaScript
Decision Constructs
Repetition Constructs
Functions
Variable Scope
Recursion
Objects and Object-Oriented Programming
Summary

ATTAYS. .. eevvernnnseneieneeenansasssresassssssssssnsssnssassasss

JavaScript Arrays Defined
Using Arrays
Creating Arrays
Accessing and Writing Array Elements
Creating Arrays from Strings
Aggregate Array Operations
Accessor Functions
Searching for a Value
String Representations of Arrays
Creating New Arrays from Existing Arrays
Mutator Functions
Adding Elements to an Array
Removing Elements from an Array

Adding and Removing Elements from the Middle of an Array

Putting Array Elements in Order

Iterator Functions
Non-Array-Generating Iterator Functions
Iterator Functions That Return a New Array

Two-Dimensional and Multidimensional Arrays
Creating Two-Dimensional Arrays
Processing Two-Dimensional Array Elements
Jagged Arrays

Arrays of Objects

Arrays in Objects

Exercises

A List ADT
A List Class Implementation
Append: Adding an Element to a List
Remove: Removing an Element from a List
Find: Finding an Element in a List
Length: Determining the Number of Elements in a List
toString: Retrieving a List’s Elements
Insert: Inserting an Element into a List
Clear: Removing All Elements from a List
Contains: Determining if a Given Value Is in a List
Moving To and Retrieving a List Element
Iterating Through a List
Iterating Through a List
A List-Based Application
Reading Text Files
Using Lists to Manage a Kiosk
Exercises

Stack Operations

A Stack Implementation

Using the Stack Class
Multiple Base Conversions
Palindromes
Demonstrating Recursion

Exercises

21
22
23
23
26
27
28
28
30
31
32
33

35
35
36
37
37
38
38
38
39
39
40
40
40
42
43
43
44
47

49
49
50
53
53
54
56
57

iv

| Table of Contents

B QUBUBS. + v veseseeeenennsnsnnsnesenssssesssnssnssansassssesssnssesssssnnss 59

Queue Operations 59
An Array-Based Queue Class Implementation 60
Using the Queue Class: Assigning Partners at a Square Dance 63
Sorting Data with Queues 67
Priority Queues 70
Exercises 73

G Linked LISIS.. . ou ve s nmsass s am s s siwie wew s wir wims wree wig w550 508 o 58 ik i SR 75
Shortcomings of Arrays 75
Linked Lists Defined 76
An Object-Based Linked List Design 77
The Node Class 77

The Linked List Class 78
Inserting New Nodes 78
Removing Nodes from a Linked List 80
Doubly Linked Lists 83
Circularly Linked Lists 87
Other Linked List Functions 88
Exercises 88

7. DICHONAIIES, . oo i osmswnsssinsinionsmswsvosasimssessnsesss s swssess 9N
The Dictionary Class 91
Auxiliary Functions for the Dictionary Class 93
Adding Sorting to the Dictionary Class 95
Exercises 96

8. Hashing.......cooivvecnmraerarnncsereeneiericeccsonsveisosnsnacmsasionsanes 99
An Overview of Hashing 99

A Hash Table Class 100
Choosing a Hash Function 100

A Better Hash Function 103
Hashing Integer Keys 105
Storing and Retrieving Data in a Hash Table 108
Handling Collisions 109
Separate Chaining 109
Linear Probing 112
Exercises 113

9, SeSieieecsertaranrsansansasissiosssisanas 6 Bie WLG B SR R O 6 L O N 115
Fundamental Set Definitions, Operations, and Properties 115
Set Definitions 115

Table of Contents | v

10.

1.

12.

Set Operations
The Set Class Implementation
More Set Operations
Exercises

Binary Trees and Binary Search Trees.............ooviiiiiiainnnn.

Trees Defined

Binary Trees and Binary Search Trees
Building a Binary Search Tree Implementation
Traversing a Binary Search Tree

BST Searches
Searching for the Minimum and Maximum Value
Searching for a Specific Value

Removing Nodes from a BST

Counting Occurrences
Exercises

Graphs and Graph Algorithms.ooiiiiiiiiiiiiinn,

Graph Definitions
Real-World Systems Modeled by Graphs
The Graph Class
Representing Edges
Building a Graph
Searching a Graph
Depth-First Search
Breadth-First Search
Finding the Shortest Path
Breadth-First Search Leads to Shortest Paths
Determining Paths
Topological Sorting
An Algorithm for Topological Sorting
Implementing the Topological Sorting Algorithm
Exercises

Sorting Algorithms.coiviieiiiiiiiiiiiiiiiiaiinniee.

An Array Test Bed
Generating Random Data
Basic Sorting Algorithms
Bubble Sort
Selection Sort
Insertion Sort
Timing Comparisons of the Basic Sorting Algorithms

116
116
118
122

123
123
125
126
128
131
132
133
134
136
139

141
141
143
143
143
144
146
146
148
150
150
151
152
153
153
158

159
159
161
161
162
165
167
168

vi

| Table of Contents

Advanced Sorting Algorithms 171
The Shellsort Algorithm 171

The Mergesort Algorithm 176

The Quicksort Algorithm 181
Exercises 186
13. Searching Algorithms.c.coerereaseecassscnsaosessensssssarssssacssnancas 187
Commonly Used Functions in Examples 187
Searching for Minimum and Maximum Values 190
Using Self-Organizing Data 193
Binary Search 197
Counting Occurrences 201
Searching Textual Data 204
Exercises 207
14. Advanced RIgorithms. : . o ce eiss vin s 40 s smmameamons swnnan osswn sos saseen 209
Dynamic Programming 209

A Dynamic Programming Example: Computing Fibonacci Numbers 210
Finding the Longest Common Substring 213

The Knapsack Problem: A Recursive Solution 216

The Knapsack Problem: A Dynamic Programming Solution 217
Greedy Algorithms 219

A First Greedy Algorithm Example: The Coin-Changing Problem 219

A Greedy Algorithm Solution to the Knapsack Problem 220
Exercises 222
MUIROE « e i ih arm s s o006 s s e 50 G S W 0 N T 70 0T A S0 225

Table of Contents | vii

CHAPTER1

The JavaScript Programming Environment
and Model

This chapter describes the JavaScript programming environment and the programming
constructs we’ll use in this book to define the various data structures and algorithms
examined.

The JavaScript Environment

JavaScript has historically been a programming language that ran only inside a web
browser. However, in the past few years, there has been the development of JavaScript
programming environments that can be run from the desktop, or similarly, from a
server. In this book we use one such environment: the JavaScript shell that is part of
Mozilla’s comprehensive JavaScript environment known as SpiderMonkey.

To download the JavaScript shell, navigate to the Nightly Build web page (http://mzl.la/
MKOUFY). Scroll to the bottom of the page and pick the download that matches your
computer system.

Once you've downloaded the program, you have two choices for using the shell. You
can use it either in interactive mode or to interpret JavaScript programs stored in a
file. To use the shell in interactive mode, type the command js at a command prompt.
The shell prompt, js>, will appear and you are ready to start entering JavaScript ex-
pressions and statements.

The following is a typical interaction with the shell:

js> 1

1

js> 1+2

3

js> var num = 1;

js> num*124

124

js> for (var 1 = 1; 1 < 6; ++1) {
print(i);

Vi wWwnN e

js>
You can enter arithmetic expressions and the shell will immediately evaluate them. You
can write any legal JavaScript statement and the shell will immediately evaluate it as
well. The interactive shell is great for exploring JavaScript statements to discover how
they work. To leave the shell when you are finished, type the command quit().

The other way to use the shell is to have it interpret complete IavaSgript programs. This
is how we will use the shell throughout the rest of the book.

To use the shell to intepret programs, you first have to create a file that contains a
JavaScript program. You can use any text editor, making sure you save the file as plain
text. The only requirement is that the file must have a .js extension. The shell has to see
this extension to know the file is a JavaScript program.

Once you have your file saved, you interpret it by typing the js command followed by
the full filename of your program. For example, if you saved the for loop code fragment
that’s shown earlier in a file named loop.js, you would enter the following:

c:\js>js loop.js
which would produce the following output:

vibh wWwN -

After the program is executed, control is returned to the command prompt.

JavaScript Programming Practices

In this section we discuss how we use JavaScript. We realize that programmers have
different styles and practices when it comes to writing programs, and we want to de-
scribe ours here at the beginning of the book so that you'll understand the more complex
code we present in the rest of the book. This isn't a tutorial on using JavaScript but is
just a guide to how we use the fundamental constructs of the language.

2 | Chapter 1: The JavaScript Programming Environment and Model

Declaring and Initializing Variables

JavaScript variables declared outside of a function are global by default and, strictly
speaking, don’t have to be declared before using. When a JavaScript variable is initialized
without first being declared, using the var keyword, it becomes a global variable. In this
book, however, we follow the convention used with compiled languages such as C++
and Java by declaring all variables before their first use. The added benefit to doing this
is that variables declared within function are created as local variables. We will talk more
about variable scope later in this chapter.

You can use strict mode to ensure variables are declared before use.
Insert the following line exactly before any other statement:

'use strict';
Or

"use strict";

To declare a variable in JavaScript, use the keyword var followed by a variable name,
and optionally, an assignment expression. Here are some examples:

var number;

var name;

var rate = 1.2;

var greeting = "Hello, world!";
var flag = false;

Arithmetic and Math Library Functions in JavaScript
JavaScript utilizes the standard arithmetic operators:

o + (addition)

o - (subtraction)

* (multiplication)
/ (division)
% (modulo)

JavaScript also has a math library you can use for advanced functions such as square
root, absolute value, and the trigonometric functions. The arithmetic operators follow
the standard order of operations, and parentheses can be used to modify that order.

Example 1-1 shows some examples of performing arithmetic in JavaScript, as well as
examples of using several of the mathematical functions.

JavaScript Programming Practices | 3

