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Preface

Perhaps as many as ten years ago a colleague of mine pointed out to me
that the Second Edition of this book was “out of print”. I mentioned this
to my editor, who at that time was Helmut Lotsch, and he enthusiastically
encouraged me to write a Third Edition. Thus began the long process that
has finally resulted in this new edition. My primary goal was to get the book
back into print, not necessarily to rewrite a new book. But I have taken
the opportunity to change emphasis on some material as a result of recent
developments and to add new material. For example, an entire chapter on
thin film magnetic multilayers has been added.

The rationale for a book on magnetism is as valid today as it was when the
first two editions were published. Magnetic phenomena continue to be discov-
ered with deep scientific implications and novel applications. Since the Second
Edition, for example, Giant Magneto Resistance (GMR) was discovered and
the new field of “spintronics” is expanding rapidly. In addition, magnetic
properties are often an important clue to our understanding of new materials.
High temperature superconductors are a good example. The “parent” (un-
doped) compounds are antiferromagnetic. Their magnetic properties, studied
by susceptibility measurements, nuclear magnetic resonance, neutron scatter-
ing, etc., have provided insight to the superconducting state. The purpose of
this book is to provide a framework for understanding magnetic phenomena.

This framework is built upon linear response theory. In particular, mean
field theory, or the random phase approximation, is used to determine the
response of materials to magnetic fields. This approach provides a physical
description of most magnetic phenomena. But it is not as powerful and ele-
gant as other approaches applied to many interesting problems represented
by magnetic systems. For example, I do not cover the renormalization group
or the techniques used to obtain exact solutions to lower dimensional sys-
tems. Thus, this book may be thought of as a poor man’s theory of magnetic
phenomena.

One of the challenges of producing this edition was that the previous edi-
tions had been type-set, so the material did not exist in a digital format. This



VI Preface

meant retyping everything using LaTeX. I am extremely grateful to Ferna
Hartman of Carnegie Mellon for recreating not only the text but the many
equations as well. The figures also had to be scanned and new ones created.
For this I am grateful to Dr. Chando Park. Sergio Rezende and Vladimir
Safonov kindly read the entire manuscript and offered helpful suggestions.
I want to thank Jeff Lynn for his comments on the chapter on neutron scat-
tering; Luc Berger for reviewing the section on spin transfer; and Christian
Ruegg for reading the section on quantum phase transitions. I would also
like to thank the Materials Science and Engineering Department at Stanford,
Shan Wang in particular, and the Geballe Laboratory for Advanced Materials
for their hospitality during the final stage of writing.

Palo Alto, September 2006 R.M. White
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The Magnetic Susceptibility

Any system may be characterized by its response to external stimuli. For
example, in electronics the proverbial “black box” is characterized by its
measured output voltage when an input current is applied. This transfer
impedance, as it is called, provides all the information necessary to understand
the operation of the black box. If we know what is in the black box - for
example, the detailed arrangement of resistors, diodes, etc. — then we can
predict, through analysis, what the transfer impedance will be.

Similarly, a system of charges and currents, such as a crystal, may be
characterized by a response function. In this text we shall be concerned
mainly with the response of such a system to a magnetic field. In this case
the “output” is the magnetization and the response function is the magnetic
susceptibility. A complete analysis of the magnetic susceptibility is virtually
impossible since the system consists of about 102! particles. Therefore we usu-
ally look to a measured susceptibility for clues to the important mechanisms
active in the system and then use these to analyze the system. In order to
carry out such a program, we must know what possible mechanisms exist and
what effect they have on the susceptibility.

Determination of the susceptibility entails evaluation of the magnetization
produced by an applied magnetic field. In general, this applied field may
depend on space and time. The resulting magnetization will also vary in space
and time. If the spatial dependence of the applied field is characterized by a
wave vector q and its time dependence is characterized by a frequency w,
and if we restrict ourselves for the time being to the magnetization with this
wave vector and frequency, we obtain the susceptibility x(q,w). As we shall
see shortly, the magnetization is the average magnetic moment. The magnetic
moment itself is a well-defined quantity. The problem, however, is the com-
putation of its average value. In order to compute this average it is necessary
to know the probabilities of the system being in its various configurations.
This information is contained in the distribution function associated with the
system.
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We shall see in this chapter that the distribution function depends on
the total energy, or Hamiltonian, of the system. Therefore the first step in
understanding magnetic properties is the identification of those interactions
relevant to magnetism. In Chap. 2 the origin of these interactions is discussed,
and they are expressed in a form which facilitates their application in later
chapters. The reader is asked to keep in mind that Chaps.1 and 2 both con-
stitute background material for the theoretical development which begins in
Chap. 3. The motivation for the material in these first two chapters should
become clear as this theory unfolds.

In the absence of time-dependent-fields we may assume that the system is
in thermal equilibrium. In this case the distribution function is easily obtained.
In Chap. 3 this is used to compute the response of noninteracting moments to
a static field. This computation leads to the susceptibility x(q,0). In Chaps. 4
and 5 the response x(gq,0) of an interacting system of moments to a static
field is investigated in the random-phase approximation.

In the presence of time-dependent fields the distribution function must be
obtained from its equation of motion. In the case of localized moments this
consists of solving the Bloch equations. For itinerant moments the distribu-
tion function is obtained from a Boltzmann equation. In Chaps. 6 and 7 these
equations are solved for weakly interacting systems to obtain the generalized
susceptibility x(g,w). Finally, in Chap. 8 the generalized susceptibility asso-
ciated with strongly interacting systems is investigated. This function is of
particular interest because its singularities determine the magnetic-excitation
spectrum of the system.

With the development of thin film deposition techniques it became pos-
sible to fabricate inhomogeneous magnetic materials, particularly thin films.
Chapter 9 describes some of the phenomena associated with such structures.

One of the most powerful techniques for studying the spatial and temporal
behavior of magnetic materials is neutron scattering. While pulsed and “cold”
sources have expanded the range of neutron studies since the first edition of
this book, the scattering description provided in Chap. 10 remains valid.

The next few sections introduce the basic quantities with which we shall
be concerned throughout this text. Since these quantities may be defined in
various ways, the reader may find it informative to compare other approaches
(especially the classic work [1]).

1.1 The Magnetic Moment

Let us begin by discussing the magnetic moment. To see why this particular
object is of interest let us consider the classical description of a system of
charges and currents. Such a system is governed by Maxwell’s equations. The
appropriate forms of these equations in a medium are the so-called macro-
scopic Mazwell equations, which are obtained from the microscopic equations
by averaging over a large number of particles, see [2]. The microscopic equation
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in which we shall be particularly interested is the one representing Ampere’s
law, which has the differential form

dr .  Oe
VXh—-&-]-{-a. (11)
We define the average fields
(h) =B,
(e)=FE. (1.2)

Here (...) is a spatial average over a region which is small compared with
the size of the sample, yet large enough to contain many atomic systems (the
lower limit to the macroscopic domain would typically be 10 nm).

When we write B(r) or E(r), the coordinate r refers to the center of
the region over which the average is taken. Thus the first equation of (1.2)
might have been written as B(r) = (h),. In this description it is assumed
that any spatial variations are large in comparison with interatomic spacings.
The actual details of the averaging will be discussed in Sect.1.2. With this
notation the macroscopic version of (1.1) becomes

dr 10E
VXB—?(J>+EW

(1.3)
The objective now is to calculate the average current density. To do this
we separate the total current density into two parts, that associated with
conduction electrons and that localized at an ionic site. The average value of
the conduction electron current density is the free current density jeree-

The ionic current density may be further separated into two contributions.
First of all, the ion may possess an electric-dipole moment which is charac-
terized by a dipole charge density pqip. If this charge density is time depen-
dent, there is a polarization current density jpo which satisfies the continuity
equation
Ipdip

ot
Taking the average of this equation and assuming that the average commutes
with the time and space derivatives, we obtain

. oP
<Z.7pol> :Ea (1.5)

ions

V- jpo| = — (1.4)

where the sum is over those ions within the averaging volume and P is the
electric polarization defined by

<Zpdip> =-V.P.

ions
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The second contribution to the ionic current density arises from the internal
motion of the ionic electrons. Since this current density jmag is stationary,
V- Jmag = 0. This is the current density responsible for the magnetic moment
m of the ion. If the center of mass of the ion is at R, the magnetic moment
is defined as

A convenient representation for jmnag which has zero divergence and satisfies
(1.6) is

jmag =—cm X Vf(l'r - RI) ) (17)

where f(|r — R|) a smoothly varying function centered at R which goes to 0
at the ionic radius and is normalized to 1. In Chap.2 we shall see that this
function has a quantum mechanical interpretation. Then

<ijag> =c <Z Vi(r - R)) x m> = oV x <Z £l - Rl)m> .
ions ions ions

(1.8)
The last average in (1.8) is the magnetization M, defined by

M = <Zf(|r—R|)m>. (1.9)

ions

Combining these results, we may now write (1.3) as

4 47 0P 10F
VXB—T]free‘}'?E"i-‘lﬂ'va‘}—zgt—. (110)
Defining
H =B - 4tM (1.11)
and
D=F+4nP, (1.12)
we have the familiar result
4 10D
= — ¢ . 1.13
VxH ¢ et 05 (1.13)

Thus we see that the magnetization which appears in the macroscopic
Maxwell’s equations is the average of the ionic magnetic moment density.
Since f(|r — R|) is normalized to the volume the magnetization is the mag-
netic moment per unit volume.

As an example of the use of definition (1.6), let us neglect the possibility of
nuclear currents and consider only the electron currents within the ion. Then
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>

——
S R — T H
o o

. >

J free (fixed)
Fig. 1.1. Geometry envisioned in deriving the magnetic energy

Imag(T) = Zevaé(r —Ta), (1.14)

«@

where e is the charge on the electron, which is —|e|, and v, is the velocity of
the ath electron. From (1.6) we find for the total magnetic moment of the ion

e
m=%¥raxva. (1.15)

Recalling that the orbital angular momentum of an electron is

lo =7 X mvg,, (1.16)
we have 2

m = Za:%ta. (1.17)
Since e = —|e|, we see that the orbital magnetic moment of an electron is in

the opposite direction to its orbital angular momentum.

We shall find it convenient to adopt a more general definition of the mag-
netic moment than that given by (1.6). This definition is based on the energy
of the magnetic system (magnetic energy is discussed in [3] and [4]). The form
of the magnetic energy depends upon the definition of the magnetic system.
Let us define our magnetic system by the ionic magnetic current density jmag-
This excludes the free currents, jee, which are assumed to be fixed and are
the source of an external field H in which our magnetic ion is to be located.!
We now want to know the change in energy of this magnetic system when
the field H is applied or, equivalently, we may think of bringing the currents
Jmag in from infinity to a position in the field (see Fig.1.1).

The energy difference results from the work done by the magnetic currents
as they accommodate to the increasing external field. Since the magnetic field
itself does no work on moving charges, we must use the induced electric field

! The magnetic field H is understood to be the field in vacuum. Strictly speaking,
this is the magnetic induction on flux density, B. But in vacuum and in cgs units,
B = H. It has become common practice to denote the field in vacuum as H.
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which is present while the external magnetic field is being turned on (due to
the relative motion). This is given by

10H
VXE_—EW‘ (118)

The work done by the magnetic currents in a time Jt is
oW = /jmag - Edr 6t. (1.19)

Making use of the representation (1.7) for jmag, integrating by parts, and then
using (1.18), we obtain

SW = — /f(]r — R|)m-6H dr. (1.20)

If the field H is uniform over the ionic dimension,  H may be taken outside
the integral. Since m is just a constant vector and f(|r — R|) is normalized
to unity,

W =-m-6H . (1.21)
This work corresponds to Kittel’s “scheme A” for applying the field [4]. Kittel
also calculates the work needed to create the magnetized material in zero
field in the first place (“scheme B”). The work associated with scheme A is
important because this is the work that results in the change in the energy of
the system given by its quantum mechanical eigenvalues [4].

Neither of these results give the total change in energy of the system when
the magnetic material is introduced into the field since they do not include
the work done by the source in keeping jfee fixed. Jackson shows that the
total change in energy is given by

W=%/M-Hodr,

where H is the field (By) in the absence of the magnetic material, and the
5 arises from an assumed linear relation between M and B.

The resulting change in the energy of the magnetic system is 6FE = W.
Thus from (1.21)

oy

As an example of the application of this definition, consider the ionic system
of electrons which gave rise to the current density of (1.14). In the presence
of a uniform field H, which may be obtained from a vector potential A by
H =V x A, the energy of such a system is

E=Y tmol+3 o, (1.23)
(e 3 [e3



