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Preface to the Second Edition

It is gratifying to learn that there is new life in an old field that has been at
the center of one’s existence for over a quarter of a century. It is particularly
pleasing that the subject of Riemann surfaces has attracted the attention of
a new generation of mathematicians from (newly) adjacent fields (for
example, those interested in hyperbolic manifolds and iterations of rational
maps) and young physicists who have been convinced (certainly not by
mathematicians) that compact Riemann surfaces may play an important
role in their (string) universe. We hope that non-mathematicians as well
as mathematicians (working in nearby areas to the central topic of this
book) will also learn part of this subject for the sheer beauty and elegance
of the material (work of Weierstrass, Jacobi, Riemann, Hilbert, Weyl)
and as healthy exposure to the way (some) mathematicians write about
mathematics.

We had intended a more comprehensive revision, including a fuller
treatment of moduli problems and theta functions. Pressure of other
commitments would have substantially delayed (by years) the appearance of
the book we wanted to produce. We have chosen instead to make a few
modest additions and to correct a number of errors. We are grateful to the
readers who pointed out some of our mistakes in the first edition; the
responsibility for the remaining mistakes carried over from the first edition
and for any new ones introduced into the second edition remains with the
authors.

June 1991
Jerusalem H.M. FARKAS
and and

Stony Brook I. Kra



Preface to the First Edition

The present volume is the culmination of ten years’ work separately and joint-
ly. The idea of writing this book began with a set of notes for a course given
by one of the authors in 1970-1971 at the Hebrew University. The notes
were refined several times and used as the basic content of courses given sub-
sequently by each cf the authors at the State University of New York at
Stony Brook and the Hebrew University.

In this book we present the theory of Riemann surfaces and its many dif-
ferent facets. We begin from the most elementary aspects and try to bring the
reader up to the frontier of present-day research. We treat both open and
closed surfaces in this book, but our main emphasis is on the compact case.
In fact, Chapters III, V, VI, and VII deal exclusively with compact surfaces.
Chapters I and 11 are preparatory, and Chapter IV deals with uniformization.

All works on Riemann surfaces go back to the fundamental results of Rie-
mann, Jacobi, Abel, Weierstrass, etc. Our book is no exception. In addition
to our debt to these mathematicians of a previous era, the present work has
been influenced by many contemporary mathematicians.

At the outset we record our indebtedness to our teachers Lipman Bers and
Harry Ernest Rauch, who taught us a great deal of what we know about this
subject, and who along with Lars V. Ahlfors are responsible for the modern
rebirth of the theory of Riemann surfaces. Second, we record our gratitude
to our colleagues whose theorems we have freely written down without attri-
bution. In particular, some of the material in Chapter III is the work of
Henrik H. Martens, and some of the material in Chapters V and VI ultimately
goes back to Robert D. M. Accola and Joseph Lewittes.

We thank several colleagues who have read and criticized earlier versions
of the manuscript and made many helpful suggestions: Bernard Maskit,



X Preface to the First Edition

Henry Laufer, Uri Srebro, Albert Marden, and Frederick P. Gardiner. The
errors in the final version are, however, due only to the authors. We also
thank the secretaries who typed the various versions: Carole Alberghine and
Estella Shivers.

August 1979 H.M. FARKAS 1. KRA
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CHAPTER 0
An Overview

The theory of Riemann surfaces lies in the intersection of many important
areas of mathematics. Aside from being an important field of study in its
own right, it has long been a source of inspiration, intuition, and examples
for many branches of mathematics. These' include complex manifolds, Lie
groups, algebraic number theory, harmonic analysis, abelian varieties, alge-
braic topology.

The development of the theory of Riemann surfaces consists of at least
three parts: a topological part, an algebraic part, and an analytic part. In
this chapter, we shall try to outline how Riemann surfaces appear quite
naturally in different guises, list some of the most important problems to
be treated in this book, and discuss the solutions.

As the title indicates, this chapter is a survey of results. Many of the
statements are major theorems. We have indicated at the end of most
paragraphs a reference to subsequent chapters where the theorem in question
is proven or a fuller discussion of the given topic may be found. For some
easily verifiable claims a (kind of) proof has been supplied. This chapter
has been written for the reader who wishes to get an idea of the scope of
the book before entering into details. It can be skipped, since it is independent
of the formal development of the material. This chapter is intended primarily
for the mathematician who knows other areas of mathematics and is inter-
ested in finding out what the theory of Riemann surfaces contains. The
graduate student who is familiar only with first year courses in algebra,
analysis (real and complex), and algebraic topology should probably skip
most of this chapter and periodically return to it.

We, of course, begin with a definition: A Riemann surface is a complex
1-dimensional connected (analytic) manifold.



2 0 An Overview

0.1. Topological Aspects, Uniformization,
and Fuchsian Groups

Given a connected topological manifold M (which in our case is a Riemann
surface), one can always construct a new manifold M known as the universal
covering manifold of M. The manifold M has the following properties:

1. There is a surjective local homeomorphism n:M — M.

2. The manifold M is simply connected; that is, the fundamental group of
M is trivial (m,(M) = {1}).

3. Every closed curve which is not homotopically trivial on M lifts to an
open curve on M, and the curve on M is uniquely determined by the
curve on M and the point lying over its initial point.

In fact one can say a lot more. If M* is any covering manifold of M, then
7,(M*) is isomorphic to a subgroup of n,(M). The covering manifolds of
M are in bijective correspondence with conjugacy classes of subgroups of
n,(M). In this setting, M corresponds to the trivial subgroup of m,(M).
Furthermore, in the case that the subgroup N of n;(M) is normal, there is
a group G = n,(M)/N of fixed point free automorphisms of M* such that
M*/G = M. Once again in the case of the universal covering manifold M,
G = n,(M). (1.24;1V.5.6)

If we now make the assumption that M is a Riemann surface, then it is
not hard to introduce a Riemann surface structure on any M* in such a
way that the map n: M* - M becomes a holomorphic mapping between
Riemann surfaces and G becomes a group of holomorphic self-mappings of
M* such that M*/G = M. (IV.5.5-1V.5.7)

It is at this point that some analysis has to intervene. It is necessary to
find all the simply connected Riemann surfaces. The result is both beautiful
and elegant. There are exactly three conformally (= complex analytically)
distinct simply connected Riemann surfaces. One of these is compact, it is
conformally equivalent to the sphere C U {oc}. The non-compact simply
connected Riemann surfaces are conformally equivalent to either the upper
half plane U or the entire plane C. (1V.4)

It thus follows from what we have said before that studying Riemann
surfaces is essentially the same as studying fixed point free discontinuous
groups of holomorphic self mappings of D, where D is either C U {0}, C,
or U.(IV.5.5)

The simplest case occurs when D = C u {=}. Since every non-trivial
holomorphic self map of Cu {00} has at least one fixed point, only the
sphere covers the sphere. (1V.6.3)

The holomorphic fixed point free self maps of C are of the form
z+z 4 b, with b € C. An analysis of the various possibilities shows that a
discontinuous subgroup of this group is either trivial or cyclic on one (free)
generator or a free abelian group with two generators. The first case



