E s i BN 2R M R G

WAL
fl’f'ﬁlﬁﬁm 61

Virtual Machines
Versatile Platforms for Systems and Processes

JAMES E. SMITH *» RAVI NAIR

VIRTUAL

' ."}’

[£] James E. Smith .

Ravi Nair

t§" r".u'— s b
T ¥ I % & AR AL
Publishing House of Electronics Industry
hitp://www.phei.com.cn

BNt BN FEE M R

A 1 S

— RESHENERTS
(FE XK)

Virtual Machines

Versatile Platforms for Systems and Processes

. James E. Smith
[£] o
Ravi Nair

T F IF & AR AL
Publishing House of Electronics Industry
Jt 5t - BEUING

mEE T

ARBAE T BOPEARIERRE RS BT EHE & A HRIUA RS N . ABABLmE, T
FHAOERTTT . b LA OB i A 72X, (85 B A R0 R FH S B F 9%, 4245 IBM i1 Daisy , HP [Y) Dynamo) A Intel/
Microsoft (1) EL &R R 40, WIW] 7 WL SEARES FUSRE ., N BORIUPLIY 7028 . ELaahg . I E
PR A5 R AT LIS S R Y SR B SCIL | TS O B REM AR AL B R | MZ0E = B IUL
Hacsl . UHRBOTHEAUNL . 2 RGnIME . PAR AR S EUPLI A . -

APiE S FITENA RS BFRHES | BREREME2EAR, UL RGBT H 1954
Molk # B . 3 AR RGBSR EE , WaMAT PR

Virtual Machines: Versatile Platforms for Systems and Processes: James E. Smith, Ravi Nair, ISBN: 1558609105, 978-1-
558609105. Copyright ©2005 by Elsevier. All rights reserved.

Authorized Simplified Chinese translation edition published by the Proprietor. ISBN: 981-259-709-3. 978-981-259-
709-0.

Copyright ©2006 by Elsevier (Singapore) Pte Lid . All rights reserved.

Printed in China by Publishing House of Electronics Industry under special arrangement with Elsevier (Singapore) Pte Ltd.
This edition is authorized for sale in China only, excluding Hong Kong SAR and Taiwan. Unauthorized export of this edition
is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal Penalties.

A A5 RSO LT Toll H BEHE 5 Elsevier (Singapore) Pre Ltd 7 AR P & 1 R AR RRAS FRAE r 15
IS A AT X B85) M BRI R B . ARZRVEAT 1, MU ib S SERGE . ik k.

MR 5 A TREIE S B 01-2006-3396
EHBERSE (CIP) #iE

HEL—— R4 5 i 5 = Virtual Machines: Versatile Platforms for Systems and Processes/ (*)
R (Smith, J.E.) 83, —Jbnt: i Dlkbidt, 2006.7

(EIMTELE =0 251)

ISBN 7-121-02672-4

... ... M. EPEYL - #bf - 330 1V, TP338
Hp R AR P 30 CIP B A7 (2006) 55 051678 %5

LA £ F
=1 I | P | = e =320) T
WRRAZAT: B Tk R
bt e X T A 173 (5% WE4%: 100036
% i SHUEHERIE
A 787 x 980 1/16 Epgk: 41 FEL: 918 T
El K 2006 4F 7 A5 1 REDK
£ A 68.00T

FLWg e 7 Tl st A 45 . g Bt (el B, e WL E s s 5 BISE G, W5 EITIHKER . BR
Hif. (010) 68279077, FRHEVFH ZWBF A 2lts@phei.com.cn, ¥ REFEE I ZHE{4F 2 dbgg@phei.com.cn.

H AR W BA

21 2P 5 & 10 4F T [[R T AL 22 A e n s Bt 3, o {5 B b bR & e) G
0] FEFR A WTO S 4K, KR SOl B E PR AL s 4 i — 3L 1T A A BRI R S A 1
FEAEFZ o [FRPEERBAR T AA IS 5255, RFRE X E BRI it s R E .

T, AR S A R (R BRI BOE R | AR E R, AR E AR
i) 5 R PRAR A, AT 2R PR 1 i S5 B S TEAE Ry S (3 R A BRI A R (T [SIS 55 B0k AR 75 it
o, DMEFRELETHELECE FIRPGE EEPRICHE K,

Wl o SR 240k 5 | i EAME s, B T “EAMTAPR M R
GI" N, X EHM R S RROE)T ST BIRE, AR IRERE, AR A IR
FOM, LGENIANRIBE AR ANl Eell . ANl 2 i A: REBob K, 1 RITAE AT B dh 28R B th 4l
T XS K D7 o) GG R 28 S0 . BRAE RS . THEMIA S 5250 | R 5EdRY
B BARIE S G BARRE RS . BIREIR S 2R R TR R, AT S 51T —
MR 595 SRR | A4 B REUAS R0 SCISERSO T T 1 D0, ke o e el -1 B 4t 0 S SR S A3k A
IV (1) BHE RBA '

TEE PR |, FRATTRHP LR FE A3 44t AR /) R SRS 206, W Pearson Education 1542 %4
BN 24857 — A /R BOR MU | RS T2 Be th kL SRR K2t R 45 S5 b 1Y
VFZAE SRS R B2 2, WA BLT - BHERC Douglas E. Comer) JEFE - B William
Stallings), M4 - #4578 (Harvey M. Deitel), AT « fizEvw (Uyless Black) %,

R OR P 1 R B AR AL, IRATTLOTE TR ALt bRt sk K, &
BHRY:, BWSGERY | B R . WL . MRIEE TR erp R | PELRASE K2
PR F ORI F | IO LR 553 2 A B R TR S 5 T AR RGN 0b (11685 | fH%
A AL A . A T BEA UHR IR S B0 (0 T800 . 14, B8R T ILHFEEA 2R L5z M
A

TEZR VN E R . B F e i Cat fe v, D4R s gobt i, AT T KR4 T4,
LGRS T VRO EA T A2 TR UE s VERRARAR T SRR B0 Ll xd (s XHERR . BRI B EAT ™A% %
XS SCEOM R B AR, FRATE G SIS N - R BR RS, BT TEIT.

UEAb, FRATTIEHS 5 [E S35 24 RS W G, St — S0 A SRR, A SR RE R Vi
PR, A, FRAT ARSI 5 %5 S AL BB B VIR,)™ KA 5 | 0 22 1) (R SMA 55 2kt
MEEA, HRETHEIREECER R S B R ECE R RS0 55 7.

HLT Tl

£

0

(ZESC]

b 3K

A

RIEER

a8 e

5K B

HMHMERS

JERTR B

R BBt

KA EE S TRER EL
JEI R 2FE R A LR B T G

FEARRAFER BB . #

KB

%X

HReRATRAIR A SR R
[Prfs BB & 20 (5 R g P EAK

R RIR S SRR . LS
R GIIWTTE A Be s B oA AT

EREEUNEN) €S M NE =5 €%
EEMEEARNTE L EAE, AT

FHAL AR ENIR S S TR R HER
B AR BOR L AT

i E PREE R O A . R B AR
PEI AN 2E SRS BRI e SR

[B A AR R LA e . 1A il
HATH AR A1 SR A 2R TR R

GREP NS EISMW =S E €

About the Authors

James E. Smith is a Professor in the Department of Electrical and Computer Engineering at
the University of Wisconsin-Madison. He first joined the University of Wisconsin in 1976,
after receiving his PhD in Computer Science from the University of Illinois. From 1979 to
1981, he took a leave of absence to work for the Control Data Corporation in Arden Hills,
MN, participating in the design of the CYBER 180/990. From 1984 to 1989, he participated in
the development of the ACA ZS-1, a scientific computer employing a dynamically scheduled,
superscalar processor architecture. In 1989, he joined Cray Research, Inc. in Chippewa Falls, WI.
While at Cray Research, he headed a small research team that participated in the development
and analysis of future supercomputer architectures.

In 1994, he re-joined the ECE Department at the University of Wisconsin. His recent research
concerns the development of the virtual machine abstraction as a technique for providing high
performance through co-design and tight coupling of virtual machine hardware and software.
Prof. Smith was the recipient of the 1999 ACM/IEEE Eckert-Mauchly Award for his contributions
to the field of computer architecture.

Ravi Nair has been a Research Staff Member since 1978 at the IBM Thomas J. Watson Research
Center, where he has helped in the architecture and design of a number of processors. He has
worked in the areas of computer architecture, performance analysis, multiprocessor virtualiza-
tion, design automation, and testing, and has several publications, patents, and IBM awards
in these areas. Among the many design and analysis tools he has developed are binary rewriting
tools for profiling, trace generation, and simulation. His current interests include processor
microarchitecture, dynamic compilation, and virtual machine technology. Dr. Nair graduated
with a B.Tech. degree in electronics and electrical communication from IIT, Kharagpur in 1974,
and with a Ph.D. degree in Computer Science from the University of Illinois in 1978. He spent a
sabbatical year at Princeton University and has also taught at Columbia University. Dr. Nair is
a member of the IBM Academy of Technology and a Fellow of the IEEE.

Foreword

I’ve been a virtual machine addict for precisely as long as I’'ve worked with
computers. My first real job, which led to my first nontrival computer program,
was to implement a virtual machine for a high-level programming language.
There seemed to be something magical about the ability for a computer to
imitate another computer, or my idea of what a computer ought to be.

Now almost 20 years later, less starry-eyed and more responsible, I am
concerned that my work has utility, making it faster or easier to get something
done than it would be otherwise. But lucky for me, virtual machines have
proven ideally suited to the needs of the computing industry, where the appre-
ciation of the virtual machine has expanded dramatically. It’s no longer only
an intellectual challenge to the researcher arguably on the “lunatic fringe” of
programming language implementation, or the secret weapon of a small cadre
of mainframe O/S engineers and pioneers of system virtualization.

Several major trends have contributed to an explosion of interest in virtual
machine technologies. In particular the rise of the World Wide Web, by far
the largest and most ubiquitous cross-platform computing environment to
date, created enormous and visible opportunities for virtual machine-based
computing. Initially targeting the WWW, VM technology hit the mainstream
as a means of safely hosting cross-platform binary programs embedded in
Web pages. From that beachhead it has expanded to become the prevalent
approach to open platforms from Web and back office servers to cell phones
and smart cards, where the equivalent benefits — cross-platform applications
that are not tied to the underlying hardware or operating system — invariably
apply. Virtual machines form the basis of Sun’s Java and Microsoft’s .NET
platforms, currently the most popular software environments on the planet.

As new markets or applications are conceived, virtual machine technologies to
support them are adapted from these stalwarts.

In other markets as well, virtual machine technology is seeing a renaissance.
Companies such as VMware are finding virtual machine platforms to be an
ideal way to provide greater resource control, scalability and performance
across variations in host hardware or operating systems. Virtual machines are

likely to be common at multiple levels of the data center or server farm.

When I was asked to review this book, it seemed an opportunity to read
something I might not get to otherwise. I expected to focus on the chapter
covering virtual machines for high-level languages. Little did I know that I
would find myself excited by less familiar topics, for instance sending back
surprised comments expressing admiration for the decades-old IBM AS/400
architecture, which I’d never understood before. It wasn’t just the realization
of how much those coming far before me had accomplished. Seeing virtual
machine technology in this broader scope made design decisions in my famil-
iar Java virtual machine architecture, and their implications, much clearer.
Such perspective is valuable even to experienced practitioners of a particular
VM art.

And I found myself once again thinking how cool it all is.

Tim Lindholm

Distinguished Engineer, Sun Microsystems, Inc.
Palo Alto

February 28, 2005

- Preface

Virtual machine (VM) technologies have been developed in a number of
contexts — operating systems, programming languages and compilers, and
computer architecture — to enable new capabilities and to solve a variety of
problems in interfacing major computer system components. Virtual machines
for supporting operating systems are receiving renewed interest after years of
relatively little activity, because they allow effective resource sharing while
maintaining a high degree of security. Virtualization is becoming popular for
servers and other network applications especially where security is of crucial
importance. In the area of programming languages, virtual machines provide
platform independence, and they support transparent dynamic translation and
optimization. In processor architectures, virtual machine technologies allow
the introduction of new instruction sets, as well as dynamic optimization for
power reduction and/or performance improvement.

‘Because of industzy consolidation around a small number of standard inter-
faces, virtual machine technology will likely be an important enabling feature
for innovations in all of the above fields. Any new instruction set, oper-
ating system, or programming language will almost certainly require some
accompanying virtual machine technology if it is to become widely accepted.
Not coincidentally, much of the impetuses for virtual machine technolo-
gies, and most of the more significant recent developments, have come from
industry.

Historically, the various VM techniques have been spread across computer
science and engineering disciplines. However, there are a number of under-
lying, cross-cutting technologies, and there is much to be gained by pulling
them together so that VM implementations can be studied and engineered

in a well-structured way. This book is an outgrowth of the idea that virtual
machines should be studied as a unified discipline.

This book is also about computer architecture in its purist sense. As classi-
cally defined, an architecture is an interface. Virtual machines couple interfaces
and extend the flexibility and functionality of the interfaces. Understanding
architecture is key to understanding virtual machines, and this book is written
from an architect’s perspective, keeping interface issues clear and at the fore-
front. A goal is for the reader to come away with a much deeper understanding
of the important computer system interfaces and the role these interfaces play
when the major components interact.

The breadth of VM applications implies the audience for this book is fairly
diverse. Although it is not currently recognized as a discipline with a targeted
set of university courses, virtual machines makes an excellent topic for a grad-
uate level course because it ties together the key disciplines of computer science
and engineering: architecture, operating systems, and programming languages.
Preliminary versions of this book have already been used, quite successfully, in
graduate courses at four different universities. The book can also be used as a
supplementary text for a compiler course on dynamic optimization or an oper-
ating system course covering classic system VMs. Virtual machine technologies
are rapidly gaining broad acceptance in industry, and practicing professionals
will find the book useful for self-education on this leading edge technology. The
book can also serve as a useful reference as it collects material from a number
of fields into one place.

The book begins by surveying the variety of VMs, putting them into perspec-
tive and building a framework for discussing VMs. The subsequent chapteérs
describe the major types of VMs in an organized way, emphasizing the com-
mon, underlying technologies. Following is a rough outline summarizing each
chapter. ‘

In Chapter ['we introduce the concept of abstraction and define the inter-
faces that are prevalent in today’s computer systems. This is followed by a
discussion of virtualization and its relationship to the interfaces. The notion
of computer architecture is introduced next, followed by a survey of different
types of virtual machines. VMs are shown to fall into two main categories,
process virtual machines and system virtual machines. We end the chapter
by refining this categorization further and suggesting a taxonomy for virtual
machines.

In Chapter 2 we address issues related to the emulation of a source instruc-
tion set architecture (ISA) on a target ISA. We demonstrate the workings of a
basic interpreter and show how threaded interpretation can help improve per-
formance. The techniques developed are demonstrated using a CISC source
ISA, the Intel IA-32, and a RISC target ISA, the IBM PowerPC. We then

.9 .

<10 -

introduce the notion of binary translation, and discuss the problems of code
discovery and code location. This is followed by a discussion of the handling of
control transfers. Many ISAs have special features (in some cases, they might
be called “quirks”) that must be handled in special ways. These are discussed
next. The chapter is rounded out with a case study of emulation in the Shade
simulation system.

Chapter 3 discusses the implementation of process virtual machines. A pro-
cess virtual machine supports an individual guest application program on a host
platform consisting of an operating system and underlying hardware. We dis-
cuss the implications of VM compatibility and show how the state of a machine,
consisting of the register state and the memory state, is mapped and maintained
in a process virtual machine. We address the issues of self-modifying code and
of protecting the region of memory used by the VM runtime software. VM
emulation consists of two parts. First, the emulation of the instruction set is
discussed, with reference to interpretation and binary translation discussed
in Chapter 2. This leads to a discussion of code caching techniques. Next,
the emulation of the interface to the host operating system is addressed. We
end the chapter by describing the FX!32 system, which embodies many of the
fundamental ideas discussed in the chapter.

Chapter 4 focuses on techniques for the optimization of translated code
for better emulation performance. It discusses the framework needed to per-
form such optimizations and the profile information that must be gathered at
program execution time in order to facilitate optimizations. Various profiling
techniques are discussed. Because optimizations often work better on larger
code blocks, the concepts of dynamic basic blocks, superblocks, traces, and
tree groups are introduced. The chapter includes an extensive discussion on
code re-ordering and its limitations. Various types of code optimizations, both
local and inter-block, are presented. The chapter concludes with a case-study of
Dynamo, a dynamic binary optimizer, which applies optimization techniques
in a system where the source and target ISAs are identical.

Chapter 5 introduces high-level language virtual machines and traces the
transition from the early Pascal P-code VMs to object-oriented VMs. The
emphasis in this chapter is on the architecture of high-level language VMs,
especially those features supporting object-oriented programming and security.
The two important object-oriented VMs of today, namely the Java Virtual
Machine and the Microsoft CLI, are described. The features of their bytecode,
stack-oriented instruction sets are described. In both cases, the description of
the instruction set is supplemented by a discussion of the overall platform that
augments the virtual machines with a set of libraries and APIs.

Chapter 6 continues the discussion of high-level language VMs by focusing
on their implementation. As in the preceding chapter, more attention is given

to Java because of its widespread usage and the variety in its implementations.
Two aspects given special consideration are security and memory manage-
ment. The importance of garbage collection is discussed along with techniques
for performing garbage collection. The interaction of Java objects with pro-
grams written natively outside the Java environment is discussed next. We then
describe how the performance of Java can be enhanced through optimizations
of code using techniques described in Chapter 4 as well as new techniques that
are specific to the object-oriented paradigm. The concepts in the chapter are
brought together using a case-study of the Jikes Research Virtual Machine.

In Chapter 7 we discuss co-designed virtual machines where a conventional
ISA is implemented through a combination of an implementation-specific ISA
and translation software that runs in concealed memory. We discuss techniques
for mapping the state of the original ISA onto the implementation ISA and for
maintaining the code cache containing translated code. Various sticky aspects,
including the implementation of precise interrupts and page faults, are also
discussed. We end the chapter with two case studies: the Transmeta Crusoe
processor and the IBM AS/400 processor.

Chapter 8 deals with the classic system virtual machines. A system virtual
machine supports a complete guest operating system and all its applications
on a host platform. We provide a motivation for these virtual machines and
outline the basic ways for implementing system virtual machines, including
native and hosted VMs. We discuss techniques for the virtualization of the
three main system resources: processors, memory, and I/O. The conditions for
virtualizability of a processor, as first enunciated by Popek and Goldberg in
the early ’70s, are developed. Also discussed are techniques for virtualization
when these conditions are not satisfied by an ISA. Memory virtualization is
discussed with attention given both to systems with architected page tables and
architected TLBs. Then virtualization is discussed for a variety of I/O devices.
We next turn our attention to hardware assists to improve the performance of
VM systems with the IBM z/VM as a running example. We end the chapter
with two case studies, that of a hosted VM system developed by VMware, and
that of the VT-x (Vanderpool) technology developed by Intel for their IA-32
architecture.

In Chapter 9 we shift our attention to the virtualization of multiprocessor
systems. We introduce the notion of system partitioning and develop a taxon-
omy for different types of partitioning. We then discuss the principles behind
physical partitioning and logical partitioning. The IBM LPAR feature is pre-
sented as a case study in logical partitioning. Following this is a discussion about
logical partitioning using hypervisors. We then turn to a system VM-based
approach to multiprocessor virtualization using a research system, Cellular
Disco, as a case study. We end the chapter with a discussion of multiprocessor

virtualization where the guest and host platforms have different ISAs, with
special attention on bridging the differences in memory models between a host
and a guest.

Chapter 10 is a discussion of emerging applications for virtual machine tech-
nology. We focus on three application areas which we feel will be important in
the coming years. The first is security. We discuss the vulnerability to attacks of
modern computer systems and outline the principles behind intrusion detec-
tion systems. The potential of VM technology in protecting and recovering
from attacks is discussed. The role of binary rewriting technology in security
is also discussed with reference to the RIO system. The second application we
focus on is that of migrating computing environments from one machine to
another. The techniques used in two systems, the Internet Suspend/Resume
system and the Stanford Collective system, are described. The commercial
application of this technology in VMware’s VMotion is also discussed. Our
third emerging application is computational grids. We outline the motivation
behind the emergence of the grid as a computing infrastructure and compare it
to the motivations behind other types of virtual machines. We end the chapter
by showing how classic system virtual machines are proving to be an important
enabler for emerging grid systems.

The Appendix is essentially a condensed course in computer systems, pro-
viding background material for the main chapters. It discusses the roles of
the processor, memory, and I/O in a computer system. This is followed by
a discussion of ISAs, including support for user applications as well as for
the operating system. Page tables and TLBs are discussed next. We follow
this with a discussion of the major components of an operating system and
the system call interface between an application and the operating system.
Finally we discuss multiprocessor architectures, including cluster architectures
and shared-memory multiprocessor systems. Memory coherence and memory
consistency issues in shared-memory systems are also addressed.

The book may be used in a course in a variety of ways. Overall, the book
is structured for a course focused on virtual machines as a topic in itself (an
approach we advocate). For an operating system oriented treatment of virtual
machines, an instructor can go straight to Chapters 8 through 10 after intro-
ducing the taxonomy of virtual machines in Chapter 1. Chapters 2 through 5
can then be discussed to get an idea of implementation details. A more hard-
ware oriented course can, however, go through Chapters 1 through 4 and then
skip Chapters 5 and 6, before covering the remaining chapters. A language-
oriented course can go straight to Chapter 5 from Chapter 1, and then backtrack
to do Chapters 2 through 4, ending with Chapter 6 to put everything together.
Chapter 10 should be of interest to virtually any course using the material in
the book.

The specific interests of practitioners will largely determine the order in
which they cover the material in the book. We have written the book in such
a way that an interested reader can start at the beginning of any chapter of
interest and follow the material in the complete chapter with only occasional
excursions to sections in other chapters referred to in the text.

There are many people we would like to thank for having made this book
possible. We would particularly like to thank the many reviewers. Michael
Hind of IBM Research, Jan Hoogerbrugge of Philips Research, Jim Larus of
Microsoft Research, Tim Lindholm of Sun Microsystems, Bernd Mathiske
of Sun Microsystems, and Mike Smith of Harvard University patiently went
through the text of the entire book and provided us with valuable feedback,
sometimes critical, but always useful. We also thank a number of reviewers
who went through specific chapters or sets of chapters and provided us with
their valuable insights and comments. These reviewers include Erik Altman,
Peter Capek, Evelyn Duesterwald, and Michael Gschwind, all of IBM Research,
Renato Figueiredo of the Univ. of Florida, Michael Franz of UC Irvine, Wei
Hsu of the Univ. of Minnesota, Toni Juan of UPC-Barcelona, Alain Kigi
of Intel, Beng-Hong Lim of VMware, Eliot Moss of Univ. of Massachusetts,
Amberst, Frank Soltis of IBM Rochester, Richard Uhlig of Intel, Romney
White of IBM Endicott, Wayne Wolf of Princeton University, and Ben Zorn
of Microsoft Research. We also appreciate the discussions with Vas Bala, Ek
Ekanadham, Wolfram Sauer, and Charles Webb of IBM, on various aspects of
virtualization.

The authors would also like to acknowledge Sriram Vajapeyam for his
contributions during the early development of this material, and the students at
the University of Wisconsin-Madison and Universitat Politécnica de Catalunya
in Barcelona for their valuable feedback while participating in VM courses and
conducting VM research. At the risk of omitting someone, the past and current
students who have been particularly helpful are Nidhi Aggarwal, Todd Bezenek,
Jason Cantin, Wooseok Chang, Ashutosh Dhodapkar, Timothy Heil, Shiliang
Hu, Tejas Karkhanis, Ho-Seop Kim, Kyle Nesbit, and Subramanya Sastry.

This book owes a lot to the guidance, persistence, and encouragement
provided by our publisher, Denise Penrose, and the support provided by her
excellent staff at Morgan-Kaufmann Publishers, including Kimberlee Honjo,
- Angela Dooley, Alyson Day, and Summer Block.

First author: I would like to thank the people at IBM Research, and Dan
Prener in particular, for their support during my 2000-2001 sabbatical — the
time this book had its genesis. I am especially grateful to Erik Altman for being
a sounding board throughout the writing of the book. I also thank my graduate
students for their support and helpful suggestions. Finally, I am grateful to
my children Barbara, Carolyn, and Jim, for their encouragement and patience

during the writing of the book, and in general for putting up with a frequently
distracted father.

Second author: I would like to thank Dan Prener, Eric Kronstadt, and Jaime
Moreno for their encouragement and support in undertaking this project.
Thanks also to Peter Capek, Dan Prener, Peter Oden, Dick Attanasio, and
Mark Mergen for many interesting tea-time discussions. Finally, I would like
to thank my wife, Indira, and my daughters, Rohini and Nandini, for their love
and understanding at all times; they have given me more than I could have ever
hoped for or imagined.

The authors are mutually grateful for the opportunity to renew a friendship
that stretches back 30 years. We have had tremendous fun and have learnt a
great deal in the process of writing this book. If you, the reader, experience just
a fraction of what we have experienced, this book will have been worthwhile.

James E. Smith

Ravi Nair

Contents

Chapter One
Introduction to Virtual Machines I
1.1 Computer Architecture 6
1.2 Virtual Machine Basics 9
1.3 Process Virtual Machines 13
1.4 System Virtual Machines 17
1.5 A Taxonomy 22
1.6 Summary: The Versatility of Virtual Machines 23
1.7 The Rest of the Book 24

Chapter Two
Emulation: Interpretation and Binary Translation 27

2.1 Basic Interpretation 29

2.2 Threaded Interpretation 32

2.3 Predecoding and Direct Threaded Interpretation 34

2.4 Interpreting a Complex Instruction Set 38

2.5 Binary Translation 49

2.6 Code Discovery and Dynamic Translation 52

2.7 Control Transfer Optimizations 64

2.8 Instruction Set Issues 68

2.9 Case Study: Shade and the Role of Emulation During Simulation 77
2.10 Summary: Performance Tradeoffs 80

Chapter Three
Process Virtual Machines 83

3.1 Virtual Machine Implementation 85
3.2 Compatibility 87

3.3 State Mapping 95

3.4 Memory Architecture Emulation 102
3.5 Instruction Emulation 114

3.6 Exception Emulation 119

3.7 Operating System Emulation 128
3.8 Code Cache Management 133

3.9 System Environment 140

3.10 Case Study: FX!32 142

3.11 Summary 145

Chapter Four

Dynamic Binary Optimization 147

4.1 Dynamic Program Behavior 153

4.2 Profiling 156

4.3 Optimizing Translation Blocks 167

4.4 Optimization Framework 180

4.5 Code Reordering 186

4.6 Code Optimizations 201

4.7 Same-ISA Optimization Systems: Special-Case Process Virtual
Machines 208

4.8 Summary 218

Chapter Five
High-Level Language Virtual Machine Architecture 221

The Pascal P-Code Virtual Machine 225
Object-Oriented High-Level Language Virtual Machines 228
The Java Virtual Machine Architecture 241
Completing the Platform: APIs 261
5.5 The Microsoft Common Language Infrastructure: A Flexible High-Level Language
Virtual Machine 267
5.6 Summary: Virtual ISA Features 275
Chapter Six
High-Level Language Virtual Machine Implementation 281
6.1 Dynamic Class Loading 284
6.2 Implementing Security 286

