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Preface to the Cambridge Edition

This is a text at the beginning graduate level. Some study of intermediate
analysis in Euclidean spaces will provide helpful background, but in this
edition such background is not a formal prerequisite. Efforts to make the book
more self-contained include inserting material on the real number system into
Chapter 1, adding a treatment of the Stone-Weierstrass theorem, and generally
eliminating references for proofs to other books except at very few points,
such as some complex variable theory in Appendix B.

Chapters 1 through 5 provide a one-semester course in real analysis. Fol-
lowing that, a one-semester course on probability can be based on Chapters
8 through 10 and parts of 11 and 12. Starred paragraphs and sections, such
as those found in Chapter 6 and most of Chapter 7, are called on rarely, if at
all, later in the book. They can be skipped, at least on first reading, or until
needed.

Relatively few proofs of less vital facts have been left to the reader. I would
be very glad to know of any substantial unintentional gaps or errors. Although
I have worked and checked all the problems and hints, experience suggests
that mistakes in problems, and hints that may mislead, are less obvious than
errors in the text. So take hints with a grain of salt and perhaps make a first
try at the problems without using the hints.

I looked for the best and shortest available proofs for the theorems. Short
proofs that have appeared in journal articles, but in few if any other textbooks,
are given for the completion of metric spaces, the strong law of large numbers,
the ergodic theorem, the martingale convergence theorem, the subadditive
ergodic theorem, and the Hartman-Wintner law of the iterated logarithm.

Around 1950, when Halmos’ classic Measure Theory appeared, the more
advanced parts of the subject headed toward measures on locally compact
spaces, as in, for example, §7.3 of this book. Since then, much of the re-
search in probability theory has moved more in the direction of metric spaces.
Chapter 11 gives some facts connecting metrics and probabilities which fol-
low the newer trend. Appendix E indicates what can go wrong with measures
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on (locally) compact nonmetric spaces. These parts of the book may well not
be reached in a typical one-year course but provide some distinctive material
for present and future researchers.

Problems appear at the end of each section, generally increasing in diffi-
culty as they go along. I have supplied hints to the solution of many of the
problems. There are a lot of new or, I hope, improved hints in this edition.

I have also tried to trace back the history of the theorems to give credit
where it is due. Historical notes and references, sometimes rather extensive,
are given at the end of each chapter. Many of the notes have been augmented
in this edition and some have been corrected. I don’t claim, however, to give
the last word on any part of the history.

The book evolved from courses given at M.LT. since 1967 and in Aarhus,
Denmark, in 1976. For valuable comments I am glad to thank Ken Alexander,
Deborah Allinger, Laura Clemens, Ken Davidson, Don Davis, Persi Diaconis,
Amout Eikeboom, Sy Friedman, David Gillman, José Gonzalez, E. Griffor,
Leonid Grinblat, Dominique Haughton, J. Hoffmann-Jgrgensen, Arthur
Mattuck, Jim Munkres, R. Proctor, Nick Reingold, Rae Shortt, Dorothy
Maharam Stone, Evangelos Tabakis, Jin-Gen Yang, and other students and
colleagues.

For helpful comments on the first edition I am thankful to Ken Brown,
Justin Corvino, Charles Goldie, Charles Hadlock, Michael Jansson, Suman
Majumdar, Rimas NorvaiSa, Mark Pinsky, Andrew Rosalsky, the late Rae
Shortt, and Dewey Tucker. I especially thank Andries Lenstra and Valentin
Petrov for longer lists of suggestions. Major revisions have been made to
§10.2 (regular conditional probabilities) and in Chapter 12 with regard to
Markov times.

R. M. Dudley
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1
Foundations; Set Theory

In constructing a building, the builders may well use different techniques
and materials to lay the foundation than they use in the rest of the building.
Likewise, almost every field of mathematics can be built on a foundation
of axiomatic set theory. This foundation is accepted by most logicians and
mathematicians concerned with foundations, but only a minority of mathe-
maticians have the time or inclination to learn axiomatic set theory in detail.
To make another analogy, higher-level computer languages and programs
written in them are built on a foundation of computer hardware and systems
programs. How much the people who write high-level programs need to know
about the hardware and operating systems will depend on the problem at hand.
In modern real analysis, set-theoretic questions are somewhat more to the
fore than they are in most work in algebra, complex analysis, geometry, and
applied mathematics. A relatively recent line of development in real analysis,
“nonstandard analysis,” allows, for example, positive numbers that are in-
finitely small but not zero. Nonstandard analysis depends even more heavily
on the specifics of set theory than earlier developments in real analysis did.
This chapter will give only enough of an introduction to set theory to define
some notation and concepts used in the rest of the book. In other words,
this chapter presents mainly “naive” (as opposed to axiomatic) set theory.
Appendix A gives a more detailed development of set theory, including a
listing of axioms, but even there, the book will not enter into nonstandard
analysis or develop enough set theory for it.
Many of the concepts defined in this chapter are used throughout mathe-
matics and will, I hope, be familiar to most readers.

1.1. Definitions for Set Theory and the Real Number System

Definitions can serve at least two purposes. First, as in an ordinary dictionary, a
definition can try to give insight, to convey an idea, or to explain a less familiar
idea in terms of a more familiar one, but with no attempt to specify or exhaust

1



2 Foundations; Set Theory

completely the meaning of the word being defined. This kind of definition will
be called informal. A formal definition, as in most of mathematics and parts
of other sciences, may be quite precise, so that one can decide scientifically
whether a statement about the term being defined is true or not. In a formal
definition, a familiar term, such as a common unit of length or a number, may
be defined in terms of a less familiar one. Most definitions in set theory are
formal. Moreover, set theory aims to provide a coherent logical structure not
only for itself but for just about all of mathematics. There is then a question
of where to begin in giving definitions.

Informal dictionary definitions often consist of synonyms. Suppose, for
example, that a dictionary simply defined “high” as “tall”” and “tall” as “high.”
One of these definitions would be helpful to someone who knew one of the
two words but not the other. But to an alien from outer space who was trying
to learn English just by reading the dictionary, these definitions would be
useless. This situation illustrates on the smallest scale the whole problem the
alien would have, since all words in the dictionary are defined in terms of other
words. To make a start, the alien would have to have some way of interpreting
at least a few of the words in the dictionary other than by just looking them up.

In any case some words, such as the conjunctions “and,” “or,” and “but,”
are very familiar but hard to define as separate words. Instead, we might have
rules that define the meanings of phrases containing conjunctions given the
meanings of the words or subphrases connected by them.

At first thought, the most important of all definitions you might expect in
set theory would be the definition of “set,” but quite the contrary, just because
the entire logical structure of mathematics reduces to or is defined in terms of
this notion, it cannot necessarily be given a formal, precise definition. Instead,
there are rules (axioms, rules of inference, etc.) which in effect provide the
meaning of “set.” A preliminary, informal definition of set would be “any
collection of mathematical objects,” but this notion will have to be clarified
and adjusted as we go along.

The problem of defining set is similar in some ways to the problem of
defining number. After several years of school, students “know” about the
numbers 0, 1, 2, ..., in the sense that they know rules for operating with
numbers. But many people might have a hard time saying exactly what
a number is. Different people might give different definitions of the number 1,
even though they completely agree on the rules of arithmetic.

In the late 19th century, mathematicians began to concern themselves with
giving precise definitions of numbers. One approach is that beginning with
0, we can generate further integers by taking the “successor” or “next larger
integer.”
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If 0 is defined, and a successor operation is defined, and the successor of
any integer n is called n’, then we have the sequence 0,0’, 0", 0", ... . In terms
of 0 and successors, we could then write down definitions of the usual inte-
gers. To do this I'll use an equals sign with a colon before it, “:=,” to mean
“equals by definition.” For example, 1:=0',2:=0",3:=0",4:=0", and
so on. These definitions are precise, as far as they go. One could produce
a thick dictionary of numbers, equally precise (though not very useful) but
still incomplete, since 0 and the successor operation are not formally de-
fined. More of the structure of the number system can be provided by giving
rules about 0 and successors. For example, one rule is that if m’ = n’, then
m = n.

Once there are enough rules to determine the structure of the nonnegative
integers, then what is important is the structure rather than what the individual
elements in the structure actually are.

In summary: if we want to be as precise as possible in building a rigorous
logical structure for mathematics, then informal definitions cannot be part of
the structure, although of course they can help to explain it. Instead, at least
some basic notions must be left undefined. Axioms and other rules are given,
and other notions are defined in terms of the basic ones.

Again, informally, a set is any collection of objects. In mathematics, the
objects will be mathematical ones, such as numbers, points, vectors, or other
sets. (In fact, from the set-theoretic viewpoint, all mathematical objects are
sets of one kind or another.) If an object x is a member of a set y, this is
written as “x € y,” sometimes also stated as “x belongs to y” or “x isin y.” If
S is a finite set, so that its members can be written as a finite list xj, ..., X,
then one writes S = {x, ..., x,}. For example, {2, 3} is the set whose only
members are the numbers 2 and 3. The notion of membership, “€,” is also
one of the few basic ones that are formally undefined.

A set can have just one member. Such a set, whose only member is x, is
called {x}, read as “singleton x.” In set theory a distinction is made between
{x} and x itself. For example if x = {1, 2}, then x has two members but {x}
only one.

A set A is included in a set B, or is a subset of B, written A C B, if and
only if every member of A is also a member of B. An equivalent statement is
that B includes A, written B D A. To say B contains x means x € B. Many
authors also say B contains A when B D A.

The phrase “if and only if” will sometimes be abbreviated “iff”” For
example, A C B iff forall x, if x € A, then x € B.

One of the most important rules in set theory is called “extensionality.” It
says that if two sets A and B have the same members, so that for any object
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x,x € A if and only if x € B, or equivalently both A C B and B C A,
then the sets are equal, A = B. So, for example, {2, 3} = {3, 2}. The order in
which the members happen to be listed makes no difference, as long as the
members are the same. In a sense, extensionality is a definition of equality
for sets. Another view, more common among set theorists, is that any two
objects are equal if and only if they are identical. So “{2, 3}” and “{3, 2} are
two names of one and the same set.

Extensionality also contributes to an informal definition of set. A set is
defined simply by what its members are—beyond that, structures and rela-
tionships between the members are irrelevant to the definition of the set.

Other than giving finite lists of members, the main way to define specific
sets is to give a condition that the members satisfy. In notation, {x: ...} means
the set of all x such that. . . . Forexample, {x: (x —4)> = 4} = (2, 6} = {6, 2}.

In line with a general usage that a slash through a symbol means “not,”
as in a # b, meaning “a is not equal to b,” the symbol “¢” means “is not a
member of”” So x ¢ y means x is not a member of y, asin 3 ¢ {1, 2}.

Defining sets via conditions can lead to contradictions if one is not careful.
For example, let r = {x:x ¢ x}. Then r ¢ r implies r € r and conversely
(Bertrand Russell’s paradox). This paradox can be avoided by limiting the
condition to some set. Thus {x € A:... x...} means “the set of all x in A
such that ... x....” As long as this form of definition is used when A is
already known to be a set, new sets can be defined this way, and it turns out
that no contradictions arise.

It might seem peculiar, anyhow, for a set to be a member of itself. It will be
shown in Appendix A (Theorem A.1.9), from the axioms of set theory listed
there, that no set is a member of itself. In this sense, the collection r of sets
named in Russell’s paradox is the collection of all sets, sometimes called the
“universe” in set theory. Here the informal notion of set as any collection of
objects is indeed imprecise. The axioms in Appendix A provide conditions
under which certain collections are or are not sets. For example, the universe
is not a set.

Very often in mathematics, one is working for a while inside a fixed set y.
Then an expression such as {x:... x...} isused tomean {x € y:... x...}.

Now several operations in set theory will be defined. In cases where it may
not be obvious that the objects named are sets, there are axioms which imply
that they are (Appendix A).

There is a set, called @, the “empty set,” which has no members. That is,
forall x, x ¢ @. This set is unique, by extensionality. If B is any set, then 25,
also called the “power set” of B, is the set of all subsets of B. For example,
if B has 3 members, then 2% has 2° = 8 members. Also, 2% = {¢} # @.
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A N B, called the intersection of A and B, is defined by AN B := {x €
A: x € B}. In other words, A N B is the set of all x which belong to both A
and B. A U B, called the union of A and B, is a set such that for any x, x €
AU B if and only if x € A or x € B (or both). Also, A\B (read “A
minus B”) is the set of all x in A which are not in B, sometimes called the
relative complement (of B in A). The symmetric difference A A B is defined
as (A\B) U (B\A).

N will denote the set of all nonnegative integers O, 1, 2,.... (Formally,
nonnegative integers are usually defined by defining 0 as the empty set @, 1 as
{®}, and generally the successor operation mentioned above by n’ = nU {n},
as is treated in more detail in Appendix A.)

Informally, an ordered pair consists of a pair of mathematical objects in
a given order, such as (x, y), where x is called the “first member” and y
the “second member” of the ordered pair (x, y). Ordered pairs satisfy the
following axiom: for all x, y, u, and v, (x, y) = (u, v) if and only if both
x =u and y = v. In an ordered pair (x, y) it may happen that x = y. Ordered
pairs can be defined formally in terms of (unordered, ordinary) sets so that
the axiom is satisfied; the usual way is to set (x, y):={{x}, {x, y}} (as in
Appendix A). Note that {{x}, {x, y}} = {{y, x}, {x]}} by extensionality.

One of the main ideas in all of mathematics is that of function. Informally,
given sets D and E, a function f on D is defined by assigning to each x in
D one (and only one!) member f(x) of E. Formally, a function is defined
as a set f of ordered pairs (x, y) such that for any x, y, and z, if (x, y) € f
and (x, z) € f, then y = z. For example, {(2, 4), (—2, 4)} is a function, but
{(4,2), (4, —2)} is not a function. A set of ordered pairs which is (formally)
a function is, informally, called the graph of the function (as in the case
D = E = R, the set of real numbers).

The domain, dom f, of a function f is the set of all x such that for some
¥, {(x, y) € f. Then y is uniquely determined, by definition of function, and
it is called f(x). The range, ran f, of f is the set of all y such that f(x)=y
for some x. A

A function f with domain A and range included in a set B is said to be
defined on A or from A into B. If the range of f equals B, then f is said to be
onto B.

The symbol “+»” is sometimes used to describe or define a function. A
function f is written as “x — f(x).” For example, “x — x3”or“f: x > x3”
means a function f such that f(x)=x3 for all x (in the domain of f).
To specify the domain, a related notation in common use is, for exam-
ple, “f: A B,” which together with a more specific definition of f in-
dicates that it is defined from A into B (but does not mean that f(A) = B; to
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distinguish the two related usages of —>, A and B are written in capitals and

members of them in, small letters, such as x).
If X is any set and A any subset of X, the indicator function of A (on X)

is the function defined by

1 ifxeA
1"(")'={0 ifx ¢ A.

(Many mathematicians call this the characteristic function of A. In probability
theory, “characteristic function” happens to mean a Fourier transform, to be
treated in Chapter 9.)

A sequence is a function whose domain is either N or the set {1, 2, ...} of
all positive integers. A sequence f with f(n) = x, for all n is often written
as {x,}»>1 or the like.

Formally, every set is a set of sets (every member of a set is also a set). If
a set is to be viewed, also informally, as consisting of sets, it is often called a
family, class, or collection of sets. Let V be a family of sets. Then the union
of V is defined by

UV = {x:x € Aforsome A € V}.
Likewise, the intersection of a non-empty collection V is defined by
[V := {x:ix € Aforall A € V}.

So for any two sets A and B, | J{A, B} = AU B and [{A, B} = AN B.
Notations such as |V and () V are most used within set theory itself. In
the rest of mathematics, unions and intersections of more than two sets are
more often written with indices. If {A,},> is a sequence of sets, their union
is written as

[0 o]
U A, = U A, = {x:x € A, for somen}.
n n=1
Likewise, their intersection is written as

[o o]
ﬂ A, = ﬂA,, := {x:x € A, for all n}.

n>1 n=1
The union of finitely many sets Ay, ..., A, is written as
n
U A; = UA; = {x:x€A;forsomei =1,...,n},
1<i<n i=1

and for intersections instead of unions, replace “some” by “all.”
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More generally, let I be any set, and suppose A is a function defined on
I whose values are sets A; := A(i). Then the union of all these sets A; is

written
U A; = U A; ;= {x:x € A, for somei}.
i iel
A set I in such a situation is called an index set. This just means that it is
the domain of the function i — A;. The index set I can be omitted from the
notation, as in the first expression above, if it is clear from the context what
I is. Likewise, the intersection is written as
(Ai == Ai :={x:x€Aforalli € I}.
i iel
Here, usually, / is a non-empty set. There is an exception when the sets under
discussion are all subsets of one given set, say X. Suppose ¢t ¢ I and let
A, := X. Then replacing I by I U {t} does not change (), A; if I is non-
empty. In case / is empty, one can set [);., A; = X.

Two more symbols from mathematical logic are sometimes useful as ab-
breviations: V means “for all” and 3 means “there exists.” For example,
(Vx € A)(3y € B) ... means that for all x in A, there is a y in B such that. ...

Two sets A and B are called disjoint iff AN B = @. Sets A; fori € I are
called disjoint iff A; N A; = @ foralli # jin I.

Next, some definitions will be given for different classes of numbers, lead-
ing up to a definition of real numbers. It is assumed that the reader is familiar
with integers and rational numbers. A somewhat more detailed and formal
development is given in Appendix A.4.

Recall that N is the set of all nonnegative integers 0, 1, 2, ..., Z denotes
the set of all integers 0, +1, £2, ..., and Q is the set of all rational numbers
m/n,wherem € Z,n € Z,and n # 0.

Real numbers can be defined in different ways. A familiar way is through
decimal expansions: x is a real number if and only if x = +y, where y =
n+ ZT;I dj/10/,n € N, and each digit d; is an integer from O to 9. But
decimal expansions are not very convenient for proofs in analysis, and they
are not unique for rational numbers of the form m /10* form € Z, m # 0, and
k € N. One can also define real numbers x in terms of more general sequences
of rational numbers converging to x, as in the completion of metric spaces to
be treated in §2.5.

The formal definition of real numbers to be used here will be by way of
Dedekind cuts, as follows: A cut is a set C C Q such that C ¢ @;C # Q;
wheneverg € C,ifr € Qand r < g thenr € C, and there exists s € Q with
s>qgands e C.
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Let R be the set of all real numbers; thus, formally, R is the set of all cuts.
Informally, a one-to-one correspondence between real numbers x and cuts C,
written C = C, or x = x¢, is givenby C, = {g € Q:q < x}.

The ordering x < y for real numbers is defined simply in terms of cuts
by C; C Cy. A set E of real numbers is said to be bounded above with an
upper bound y iff x < y forall x € E. Then y is called the supremum or least
upper bound of E, written y = sup E, iff it is an upper bound and y < z for
every upper bound z of E. A basic fact about R is that for every non-empty
set E C R such that E is bounded above, the supremum y = sup E exists.
This is easily proved by cuts: C, is the union of the cuts C, forall x € E, as
is shown in Theorem A.4.1 of Appendix A.

Similarly, a set F of real numbers is bounded below with a lower bound
vifv < x forall x € F, and v is the infimum of F,v = inf F, iff t < v for
every lower bound ¢ of F. Every non-empty set F which is bounded below
has an infimum, namely, the supremum of the lower bounds of F (which are
a non-empty set, bounded above). :

The maximum and minimum of two real numbers are defined by
min(x, y) = x and max(x, y) = y if x < y; otherwise, min(x, y) = y and
max(x, y) = x.

For any real numbers a < b, let [a, b] := {x € R:a < x < b}.

Forany two sets X and Y, their Cartesian product, written X x Y , is defined
as the set of all ordered pairs (x, y) for x in X and y in Y. The basic example
of a Cartesian product is R x R, which is also written as R? (pronounced
r-two, not r-squared), and called the plane.

Problems
1. Let A := (3,4, 5} and B := {5, 6, 7}. Evaluate: (a) AU B. (b) AN B.
(c) A\B.(d) A AB.
2. Show that @ # {@} and (@) # {{2}}.
3. Which of the following three sets are equal? (a) {{2, 3}, {4}}; (b) {{4)},
{2, 3}5 © {{4}, {3, 2}}.
4. Which of the following are functions? Why?
@ {(1,2),(2,3), (3, )}.
() {(1,2), (2,3), (2, )}.
(© {(2,1), (3, 1), (1,2)}.
@) {(x,y) € R%:x = y?}.
(e) {(x,y) e R*y =x?}.
5. For any relation V (that is, any set of ordered pairs), define the domain of



