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What's New in the
Ninth Edition-

The ninth edition continues to streamline both the text materials and the software
support providing a broad focus on algorithmic and practical implementation of
Operations Research techniques.

For the first time in this book, the new Section 3.7 of volume one provides a
comprehensive (math-free) framework of how the different LP algorithms
(simplex, dual simplex, revised simplex, and interior point) are implemented in
commercial codes (e.g., CPLEX and XPRESS) to provide the computational
speed and accuracy needed to solve very large problems.

The new Chapter 2 covers efficient heuristics/metaheuristics designed to find
good approximate solutions for integer and combinatorial programming prob-
lems. The need for heuristics/metaheuristics is in recognition of the fact that the
performance of the exact algorithms has been less than satisfactory from the
computational standpoint.

The new Chapter 3 is dedicated to the important traveling salesperson problem.
The presentation includes a variety of applications and the development of exact
and heuristic solution algorithms.

All the algorithms in the new Chapters 2 and 3 are coded in Excel in a manner
that permits convenient interactive experimentation with the models.

All detailed AMPL models have been moved to Appendix C to complement the
AMPL syntactical rules presented in the appendix. The models are cross-referenced
opportunely in the book.

Numerous new problems have been added throughout the book.

The TORA software has been updated.

In keeping with my commitment to maintain a reasonable count of printed

pages, I found it necessary to move some material to the website, including the
AMPL appendix.
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Real-Life Application—Optimal Ship Routing and Personnel Assignment for
Naval Recruitment in Thailand

Thailand Navy recruits are drafted four times a year. A draftee reports to 1 of 34 local
centers and is then transported by bus to one of four navy branch bases. From there,
recruits are transported to the main naval base by ship. The docking facilities at the
branch bases may restrict the type of ship that can visit each base. Branch bases have
limited capacities but, as a whole, the four bases have sufficient capacity to accom-
modate all the draftees. During the summer of 1983, a total of 2929 draftees were
transported from the drafting centers to the four branch bases and eventually to the
main base. The problem deals with determining the optimal schedule for transporting
the draftees, first from the drafting centers to the branch bases and then from the
branch bases to the main base. The study uses a combination of linear and integer
programming. The details are given in Case 5, Chapter 26, on the website.

SIMPLEX METHOD FUNDAMENTALS

In linear programming, the feasible solution space forms a convex set if the line segment
joining any two distinct feasible points also falls in the set. An extreme point of the
convex set is a feasible point that cannot lie on a line segment joining any two distinct
feasible points in the set. Actually, extreme points are the same as corner points, as used
in Chapters 2, 3, and 4 of volume one.

Figure 1.1 illustrates two sets. Set (a) is convex (with six extreme points), and
set (b) is not.

The graphical LP solution given in Section 2.3 of volume one demonstrates that
the optimum solution is always associated with a feasible extreme (corner) point of the
solution space. This result makes sense intuitively, because every feasible point in the
LP solution space can be determined as a function of its feasible extreme points. For
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FIGURE 1.1

Examples of a convex and a nonconvex set (a) (b)

example, in convex set (a) of Figure 1.1, a convex combination of the extreme points,
X, X,, X3, X4, X, and X, identifies any feasible point X as

X = alxl + a2X2 I a3X3 + CI£4X4 o8 a5X5 + a6X6
oy + ap + a3+ ag toas + =1
o= 0,i=1,2,...,6

This observation shows that a finite number of extreme points completely define the infi-
nite number of points in the solution space. This result is the crux of the simplex method.

Example 1.1-1
Show that the following set is convex:
C={(x,x)lx1 =2,x,=3,x=0,x, = 0}

Let X; = {x{, x5} and X, = {x{, x{} be any two distinct points in C. If C is convex, then
X = (x, %) =y X; + e, X5, 01 + @ = 1, ¢4, ap = 0, must also be in C.To show that this is
true, we need to show that all the constraints of C are satisfied by the line segment X —that is,

xp = ogxy + apx] = y(2) + ap(2) =2
ayxy + apxy = ay(3) + a(3) =3

=X = 2,XZS 3
X2

Additionally, the nonnegativity conditions are satisfied because «; and «, are nonnegative.

PROBLEM SET 1.1A

1. Show that the set Q = {xq, x3|x; — x, = 3, x; = 0, x, = 0} is convex. Is the non-
negativity condition essential for the proof?

*2. Show that the set Q = {x;, x,/x; = 1 or x, = 2} is not convex.
3. Determine graphically the extreme points of the following convex set:

Q= {x1, X2l X1+ x,=2, =0, x,= 0}

Show that the entire feasible solution space can be determined as a convex combination
of its extreme points. Hence conclude that any convex (bounded) solution space is
totally defined once its extreme points are known.

4. In the solution space in Figure 1.2 (drawn to scale), express the interior point (3,1) as a

convex combination of the extreme points A, B, C, and D by determining the weights
associated with each extreme point.
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X2

G, 1)

A B s FIGURE 1.2
0 1 2 3 4 5 6 ! Solution space for Problem 4, Set 7.1a

From Extreme Points to Basic Solutions

It is convenient to express the general LP problem in equation form (see Section 3.1

of volume one) using matrix notation.! Define X as an n-vector representing the variables,

A as an (m X n)-matrix representing the constraint coefficients, b as a column
vector representing the right-hand side, and C as an n -vector representing the obje-

ctive-function coefficients. The LP is then written as
Maximize or minimize z = CX
subject to
AX = b
X =0

Using the format, the rightmost m elements of X represent the starting basic variables
Hence, the rightmost m columns of A always form an identity matrix I

A basic solution of AX = b is determined by setting n — m variables equal to
zero, and then solving the resulting m equations in the remaining m unknowns,
provided that the resulting solution is unique. Given this definition, the theory of linear
programming establishes the following result between the geometric definition of
extreme points and the algebraic definition of basic solutions:

Extreme points of {X | AX = b} < Basic solutions of AX = b

The relationship means that the extreme points of the LP solution space are defined by
the basic solutions of AX = b, and vice versa. Thus, the basic solutions of AX = b
provide all the information needed to determine the optimum solution of the LP
problem. Furthermore, the nonnegativity restriction, X = 0, limit the search for the
optimum to the feasible basic solutions only.

1A review of matrix algebra is given in Appendix D on the website.
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To formalize the definition of a basic solution, the system AX = b is written in
vector form as

M=
v
X

I

-

j=1

The vector P, is the jth column of A. A subset of m vectors forms a basis, B, if, and only
if, the selected m vectors are linearly independent. In this case, the matrix B is
nonsingular. Defining X 3 as an m-vector of the basic variables, then

BXB =b
Using the inverse B}, the associated basic solution is
X;=B7b

If B"'!b = 0, then Xj is feasible. The remaining n — m variables are nonbasic at
zero level.
The previous result shows that in a system of m equations and n unknowns, the

maximum number of (feasible and infeasible) basic solutions is (};,) = ,—n.—(,;"l—m).

Example 1.1-2

Determine all the basic feasible and infeasible solutions of the following system of equations.

G 3 2)=)-6)
2 -2 2/1% .
X3
The following table summarizes the results. The inverse of B is determined by one of the
methods in Section D.2.7 on the website.

B BX; =b Solution Type

(P, Py) (1 3)(x1) _ (4) (x1> (% g) (4) (%) Feasible
2 —2/\% 2 x) - % _% 2]~ %
(P, Py) (Not a basis because P;and P; are dependent)
) ( 4) ( %) Infeasible
2) =\

(P, Py) (2 - (2)-( -
=2 =2 X3 2 X3 _% __g.
We can also investigate the problem by expressing it in vector form as follows:

)+ (D= (G)=-)

The two-dimensional vectors Py, P, P;, and b can be represented generically as (a,, a,)”. Figure 1.3
graphs these vectors on the (ay, a,)-plane. For example, forb = (4,2)7,a, = 4,and a, = 2.
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a

FIGURE 1.3
Vector representation of LP solution space

Because we are dealing with two equations (m = 2), a basis includes exactly two vectors,
selected from among Py, P,, and P; . The matrices (P;, P,) and (P,, P;) form bases because their
associated vectors are independent. On the other hand, the vectors of the matrix (P;,P;) are
dependent, and hence the matrix is not a basis.

Algebraically, a (square) matrix forms a basis if its determinant is not zero (see Section D.2.5
on the website). The following computations show that the combinations (P;, P,) and (P,, P;) are
bases, and the combination (P, P5) is not.

det(Py, P,) = det(; _;) =(1x-2)-(2%3)=-8#0

det(P,, P3) = det(_g :;) =(BX-2)—(-1X-2)=-8#0

1

det(P;, P;) = det<2 :;) =(1X-2)—-(-1%x2)=0

PROBLEM SET 1.1B

1. In the following sets of equations, (a) and (b) have unique (basic) solutions, (c) has an
infinite number of solutions, and (d) has no solution. Show how these results can be
verified using graphical vector representation. From this exercise, state the general
conditions for vector dependence/independence that lead to unique solution, infinity of
solutions, and no solution.

@ x;+3x,=2 (b) 2x; +3x, =1
3+ x,=3 2x1— x,=2
() 2x; +6x,=4 d) 2x; —4x, =2
X1 +3x, =2 -x; +2x, =1

2. Use vectors to determine graphically the type of solution for each of the sets of
equations below: unique solution, an infinite number of solutions, or no solution. For



