KEtENgsENEEgHzY (BEIRR)

ADVANCED UNIX PROGRAMMING

SECOND EDITION

BRUNIXERFixit

(55207)

Marc J. Rochkind #

K¥UWENATEIIFL BN AT (R

Advanced UNIX Programming

Second Edition

=45 UNIX 12 Figit
(% 2 kR)

Marc J. Rochkind 3

hR #-

i
1
w ot
i
g

English reprint edition copyright © 2006 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Advanced UNIX Programming, Second Edition by Marc J. Rochkind, Copyright ©
2004
All Rights Reserved.

Published by arrangement with the original publisher, Addison-Wesley, publishing as Addison-Wesley.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

A4 B E1AR 1 Pearson Education (4 #0E HHAREE) FERUATE HE K2 RS HERBCR AT

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macao SAR).

(VR F e A REFEER (FEEPEEE. BV ITHRNGEEEHX) HELT.

b RARR EEN A FEILS BT 01-2005-3986

ERALER A, BHENAATT. ZE4RAEIE: 010-62782989 13501256678 13801310933

A+ £ FENEA Pearson Education (54 H & HARER) AP AIRE, TREERSHE.

E B MRS B (CIP) £

#4% UNIX FL/% %t = Advanced UNIX Programming: &5 2 it / (%) P54 4 (Rochkind, M. J.) #&. —#
EA. —IbE: TERREE HIREE, 2006.4

R HNEE BN E LB RID

ISBN 7-302-12645-3

I. @& 1. % L UNIX #:/ERG—BF R —m%#R— 8k — %30 V. TP316.81

o [B A BB CIP $diE k% 5 (20060 2 0178155

WK & TEERE AR # ub: JbRUHEREETCE
http://www.tup.com.cn il Y%: 100084
#EHL: 010-6277 0175 ZFBRSE: 010-6277 6969

ED R 2. dbntlUZEdHEnkl)

4T & =R R

% 17 #: HEPEREILERATH

. 185X230 EN3K: 45.25

: 2006 4F 4 JI55 1 AR 2006 4F 4 HES 1 IRENK
: ISBN 7-302-12645-3/TP * 8082

: 1~3000

: 69.00 JG

S HF H
S & a5 B

i e W

HEN 21 e, RS EMET. PSS E) B3 4R . sE it
BT ANA M TES . WIIE KRR BETMAA, RS PIEILS . WSAT, A
Brgrm EMAA P, BRZREEE. HiiRE S8 0B SRR, O TRk
BRI, BOE AR K et B R A B S R R b -

R AL 1996 FIF4h, HSEAEFEZMRAFG1E, FEHRT “ K5
HEMND GEERRD” F— AR5 5 BRI, SZ3E N EH VORISR, #A 21 i, Al
A N B B B B R BRSSPI, ARG E, By KRN A, S
BIFAE, — W BEAE A K & K P& A T 3R E AR K LA v L 1R A2
WA B E L, AURAE R ENEE EANE L BM RS GEENROD”, LA
IRV AR 2 Bt A A R BB I BOR R L R B AT SEA R N & 5K B
[BATHERE [AN SHLECE UL F5 800, LRI BRATHE X SR LR [035 40 b R 51 G
EIRR)” A9 S0, I8 A R R A) 5 2

RPN ST

Preface

This book updates the 1985 edition of Advanced UNIX Programming to cover a
few changes that have occurred in the last eighteen years. Well, maybe “few” isn’t
the right word! And “updates” isn’t right either. Indeed, aside from a sentence
here and there, this book is all new. The first edition included about 70 system
calls; this one includes about 300. And none of the UNIX standards and imple-
mentations discussed in this book—POSIX, Solaris, Linux, FreeBSD, and Darwin
(Mac OS X)—were even around in 1985. A few sentences from the 1985 Preface,
however, are among those that I can leave almost unchanged:

The subject of this book is UNIX system calls—the interface between the UNIX kernel and
the user programs that run on top of it. Those who interact only with commands, like the
shell, text editors, and other application programs, may have little need to know much about
system calls, but a thorough knowledge of them is essential for UNIX programmers. System
calls are the only way to access kernel facilities such as the file system, the multitasking
mechanisms, and the interprocess communication primitives.

System calls define what UNIX is. Everything else—subroutines and commands—is built on
this foundation. While the novelty of many of these higher-level programs has been responsi-
ble for much of UNIX’s renown, they could as well have been programmed on any modern
operating system. When one describes UNIX as elegant, simple, efficient, reliable, and porta-
ble, one is referring not to the commands (some of which are none of these things), but to the
kernel.

That’s all still true, except that, regrettably, the programming interface to the ker-
nel is no longer elegant or simple. In fact, because UNIX development has
splintered into many directions over the last couple of decades, and because the
principal standards organization, The Open Group, sweeps up almost everything
that’s out there (1108 functions altogether), the interface is clumsy, inconsistent,
redundant, error-prone, and confusing. But it’s still efficient, reliably imple-
mented, and portable, and that’s why UNIX and UNIX-like systems are so
successful. Indeed, the UNIX system-call interface is the only widely imple-
mented portable one we have and are likely to have in our lifetime.

vii

viii

Preface

To sort things out, it’s not enough to have complete documentation, just as the
Yellow Pages isn’t enough to find a good restaurant or hotel. You need a guide
that tells you what’s good and bad, not just what exists. That’s the purpose of this
book, and why it’s different from most other UNIX programming books. I tell you
not only how to use the system calls, but also which ones to stay away from
because they’re unnecessary, obsolete, improperly implemented, or just plain
poorly designed.

Here’s how I decided what to include in this book: I started with the 1108 func-
tions defined in Version 3 of the Single UNIX Specification and eliminated about
590 Standard C and other library functions that aren’t at the kernel-interface level,
about 90 POSIX Threads functions (keeping a dozen of the most important),
about 25 accounting and logging functions, about 50 tracing functions, about 15
obscure and obsolete functions, and about 40 functions for scheduling and other
things that didn’t seem to be generally useful. That left exactly 307 for this book.
(See Appendix D for a list.) Not that the 307 are all good—some of them are use-
less, or even dangerous. But those 307 are the ones you need to know.

This book doesn’t cover kernel implementation (other than some basics), writing
device drivers, C programming (except indirectly), UNIX commands (shell, vi,
emacs, etc.), or system administration.

There are nine chapters: Fundamental Concepts, Basic File I/O, Advanced File /O,
Terminal 1/O, Processes and Threads, Basic Interprocess Communication,
Advanced Interprocess Communication, Networking and Sockets, and Signals
and Timers. Read all of Chapter 1, but then feel free to skip around. There are lots
of cross-references to keep you from getting lost.

Like the first edition, this new book includes thousands of lines of example code,
most of which are from realistic, if simplified, applications such as a shell, a full-
screen menu system, a Web server, and a real-time output recorder. The examples
are all in C, but I’ve provided interfaces in Appendices B and C so you can pro-
gram in C++, Java, or Jython (a variant of Python) if you like.

The text and example code are just resources; you really learn UNIX program-
ming by doing it. To give you something to do, I’ve included exercises at the end
of each chapter. They range in difficulty from questions that can be answered in a
few sentences to simple programming problems to semester-long projects.

I used four UNIX systems for nuts-and-bolts research and to test the examples:
Solaris 8, SuSE Linux 8 (2.4 kernel), FreeBSD 4.6, and Darwin (the Mac OS X

Preface ix

kernel) 6.8. I kept the source on the FreeBSD system, mounted on the others with
NFS or Samba.!

I edited the code with TextPad on a Windows system and accessed the four test
systems with Telnet or SSH (PuTTY) or with the X Window System (XFree86
and Cygwin). Having the text editor and the four Telnet/SSH/Xterm windows
open on the same screen turned out to be incredibly convenient, because it takes
only a few minutes to write some code and check it out on the four systems.
In addition, I usually had one browser window open to the Single UNIX Specifi-
cation and one to Google, and another window running Microsoft Word for
editing the book. With the exception of Word, which is terrible for big documents
like books (crashes, mixed-up styles, weak cross-referencing, flakey document-
assembly), all of these tools worked great.2 I used Perl and Python for various
things like extracting code samples and maintaining the database of system calls.

All of the example code (free open source), errata, and more is on the book Web
site at www.basepath.com/aup.

I"d like to thank those who reviewed the drafts or who otherwise provided techni-
cal assistance: Tom Cargill, Geoff Clare, Andrew Gierth, Andrew Josey, Brian
Kernighan, Barry Margolin, Craig Partridge, and David Schwartz. And, special
thanks to one dedicated, meticulous reviewer who asked to remain anonymous.
Naturally, none of these folks is to be blamed for any mistakes you find—I get
full credit for those.

I’d also like to thank my editor, Mary Franz, who suggested this project a year or
so ago. Luckily, she caught me at a time when I was looking into Linux in depth
and started to get excited about UNIX all over again. Reminds me a bit of 1972....

I hope you enjoy the book! If you find anything wrong, or if you port the code to
any new systems, or if .you just want to share your thoughts, please email me at
aup(@basepath.com.

Marc J. Rochkind
Boulder, Colorado
April, 2004

1. The four systems are running on various old PCs I"ve collected over the years and on a Mac [bought on eBay for $200.
I had no particular reason for using SuSE Linux and have since switched that machine over to RedHat 9.

2. I could have used any of the systems as my base. Windows turned out to be convenient because my big LCD monitor is
attached to that system and because I like TextPad (www.textpad.com). Information on PuTTY is at www.chiark.greenend.
org.uk/~sgtatham/putty/. (Google “PuTTY if that link doesn’t work.)

Preface

Chapter 1 Fundamental Concepts

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

A Whirlwind Tour of UNIX and Linux
Versions of UNIX 16

Using System Calls 19

Error Handling 24

UNIX Standards 38

Common Header File 55

Dates and Times 56

About the Example Code 67
Essential Resources 68

Chapter 2 Basic File I/O

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

Introduction to File I/O 71

File Descriptors and Open File Descriptions
Symbols for File Permission Bits 75
open and creat System Calls 76
umask System Call 86

unlink System Call 86

Creating Temporary Files 88

File Offsets and O_APPEND 90
write System Call 92

read System Call 96

close System Call 97

User Buffered I/O 98

lseek System Call 105

pread and pwrite System Calls 108

Contents

xi

71

72

Contents

2.15 readv and writev System Calls 110
2.16 Synchronized I/O 114
2.17 truncate and ftruncate System Calls

Chapter 3 Advanced File I/O

3.1 Introduction 123

3.2 Disk Special Files and File Systems 123
3.3 Hard and Symbolic Links 137

3.4 Pathnames 144

3.5 Accessing and Displaying File Metadata

3.6 Directories 158

3.7 Changing an I-Node 181

3.8 More File-Manipulation Calls 185

3.9 Asynchronous I/O 189

Chapter 4 Terminal I/O

4.1 Introduction 203

4.2 Reading from a Terminal 204

4.3 Sessions and Process Groups (Jobs) 224
4.4 ioctl System Call 232

4.5 Setting Terminal Attributes 233

4.6 Additional Terminal-Control System Calls

4.7 Terminal-Identification System Calls 248

4.8 Full-Screen Applications 250
4.9 STREAMS I/O 255
4.10 Pseudo Terminals 256

Chapter 5 Processes and Threads

5.1 Introduction 277

5.2 Environment 277

5.3 exec System Calls 284

5.4 Implementing a Shell (Version 1) 292
5.5 fork System Call 296

5.6 Implementing a Shell (Version 2) 300

5.7 exit System Calls and Process Termination

119

245

301

123

203

277

Contents v

58 wait,waitpid, andwaitid System Calls 304
5.9 Signals, Termination, and Waiting 313
5.10 Implementing a Shell (Version 3) 314
5.11 Getting User and Group IDs 315
5.12 Setting User and Group IDs 317
5.13 Getting Process IDs 319
5.14 chroot System Call 319
5.15 Getting and Setting the Priority 320
5.16 Process Limits 322
5.17 Introduction to Threads 329
5.18 The Blocking Problem 350

Chapter 6 Basic Interprocess Communication 361

6.1 Introduction 361

6.2 Pipes 362

6.3 dup and dup2 System Calls 371

6.4 A Real Shell 376

6.5 Two-Way Communication with Unidirectional Pipes 390
6.6 Two-Way Communication with Bidirectional Pipes 399

Chapter 7 Advanced Interprocess Communication 405

7.1 Introduction 405
7.2 FIFOs, or Named Pipes 406
73 An Abstract Simple Messaging Interface (SMI) 414
7.4 System V IPC (Interprocess Communication) 428
7.5 System V Message Queues . 434
7.6. POSIX IPC 442
7.7 POSIX Message Queues 445
7.8 About Semaphores 458
7.9 System V Semaphores 460
7.10 POSIX Semaphores 469
7.11 File Locking 477
7.12 About Shared Memory 488
7.13 System V Shared Memory 489
7.14 POSIX Shared Memory 504
7.15 Performance Comparisons 515

Contents

Chapter 8 Networking and Sockets 519

8.1 Socket Basics 520
8.2 Socket Addresses 533
8.3 Socket Options 544
8.4 Simple Socket Interface (SSI) 549
8.5 Socket Implementation of SMI 563
8.6 Connectionless Sockets 567
8.7 Out-of-Band Data 577
8.8 Network Database Functions 578
8.9 Miscellaneous System Calls 593
8.10 High-Performance Considerations 597

Chapter 9 Signals and Timers 601

9.1 Signal Basics 601

9.2 Waiting for a Signal 624

9.3 Miscellaneous Signal System Calls 634
9.4 Deprecated Signal System Calls 635
9.5 Realtime Signals Extension (RTS) 637
9.6 Global Jumps 648

9.7 Clocks and Timers 651

Appendix A Process Attributes 667
Appendix B Ux: A C++ Wrapper for Standard UNIX Functions 673
Appendix C Jtux: A Java/Jython Interface to Standard

UNIX Functions 677
Appendix D Alphabetical and Categorical Function Lists 685
References 703

Index 705

EEEE 1

Fundamental Concepts

1.1 A Whirlwind Tour of UNIX and Linux

This section takes you on a quick tour of the facilities provided by the UNIX and
Linux kernels. I won’t deal with the user programs (commands) that normally
come with UNIX, such as 1s, vi, and grep. A discussion of these is well outside
the scope of this book. And I won’t say much about the internals of the kernel
(such as how the file system is implemented) either. (From now on, whenever I
say UNIX, I mean Linux, too, unless I say otherwise.)

This tour is meant to be a refresher. I’ll use terms such as process before defining
them, because I assume you already know roughly what they mean. If too much
sounds new to you, you may want to become more familiar with UNIX before
proceeding. (If you don’t know what a process is, you definitely need to get more
familiar!) There are lots of introductory UNIX books to start with. Two good ones
are The UNIX Programming Environment [Ker1984] and UNILX for the Impatient
[Abr1996] (Chapter 2 is a great introduction).’

1.1.1 Files

There are several kinds of UNIX files: regular files, directories, symbolic links,
special files, named pipes (FIFOs), and sockets. I’ll introduce the first four here
and the last two in Section 1.1.7.

1.1.1.1 Regular Files

Regular files contain bytes of data, organized into a linear array. Any byte or
sequence of bytes may be read or written. Reads and writes start at a byte loca-

1. You'll find the References at the end of the book.

2 Chapter 1: Fundamental Concepts

tion specified by the file offset, which can be set to any value (even beyond the
end of the file). Regular files are stored on disk.

It isn’t possible to insert bytes into the middle of a file (spreading the file apart),
or to delete bytes from the middle (closing the gap). As bytes are written onto the
end of a file, it gets bigger, one byte at a time. A file can be shrunk or enlarged to
any length, discarding bytes or adding bytes of zeroes.

Two or more processes can read and write the same file concurrently. The results
depend on the order in which the individual I/O requests occur and are in general
unpredictable. To maintain order, there are file-locking facilities and semaphores,
which are system-wide flags that processes can test and set (more on them in Sec-
tion 1.1.7).

Files don’t have names; they have numbers called i-numbers. An i-number is an
index into an array of i-nodes, kept at the front of each region of disk that con-
tains a UNIX file system. Each i-node contains important information about one
file. Interestingly, this information doesn’t include either the name or the data
bytes. It does include the following: type of file (regular, directory, socket, etc.);
number of links (to be explained shortly); owner’s user and group ID; three sets of
access permissions—for the owner, the group, and others; size in bytes; time of
last access, last modification, and status change (when the i-node itself was last
modified); and, of course, pointers to disk blocks containing the file’s contents.

1.1.1.2 Directories and Symbolic Links

Since it’s inconvenient to refer to files by i-number, directories are provided to allow
names to be used. In practice, a directory is almost always used to access a file.

Each directory consists, conceptually, of a two-column table, with a name in one
column and its corresponding i-number in the other column. A name/i-node pair is
called a /ink. When the UNIX kernel is told to access a file by name, it automati-
cally looks in a directory to find the i-number. Then it gets the corresponding i-
node, which contains more information about the file (such as who can access it).
If the data itself is to be accessed, the i-node tells where to find it on the disk.

Directories, which are almost like regular files, occupy an i-node and have data.
Therefore, the i-node corresponding to a particular name in a directory could be
the i-node of another directory. This allows users to arrange their files into the
hierarchical structure that’s familiar to users of UNIX. A path such as memo/
july/smith instructs the kernel to get the i-node of the current directory to

A Whirlwind Tour of UNIX and Linux 3

locate its data bytes, find memo among those data bytes, take the corresponding i-
number, get that i-node to locate the memo directory’s data bytes, find july
among those, take the corresponding i-number, get the i-node to locate the july
directory’s data bytes, find smith, and, finally, take the corresponding i-node, the
one associated with memo/july/smith.

In following a relative path (one that starts with the current directory), how does
the kernel know where to start? It simply keeps track of the i-number of the cur-
rent directory for each process. When a process changes its current directory, it
must supply a path to the new directory. That path leads to an i-number, which
then is saved as the i-number of the new current directory.

An absolute path begins with a / and starts with the root directory. The kernel
simply reserves an i-number (2, say) for the root directory. This is established
when a file system is first constructed. There is a system call to change a pro-
cess’s root directory (to an i-number other than 2).

Because the two-column structure of directories is used directly by the kernel (a
rare case of the kernel caring about the contents of files), and because an invalid
directory could easily destroy an entire UNIX system, a program (even if run by
the superuser) cannot write a directory as if it were a regular file. Instead, a pro-
gram manipulates a directory by using a special set of system calls. After all, the
only legal writing actions are to add or remove a link.

It is possible for two or more links, in the same or different directories, to refer to
the same i-number. This means that the same file may have more than one name.
There is no ambiguity when accessing a file by a given path, since only one i-
number will be found. It might have been found via another path also, but that’s
irrelevant. When a link is removed from a directory, however, it isn’t immedi-
ately clear whether the i-node and the associated data bytes can be thrown away
too. That is why the i-node contains a link count. Removing a link to an i-node
merely decrements the link count; when the count reaches zero, the kernel dis-
cards the file.

There is no structural reason why there can’t be multiple links to directories as
well as to regular files. However, this complicates the programming of com-
mands that scan the entire file system, so most kernels outlaw it.

Multiple links to a file using i-numbers work only if the links are in the same file
system, as i-numbers are unique only within a file system. To get around this,
there are also symbolic links, which put the path of the file to be linked to in the

B Chapter 1: Fundamental Concepts

data part of an actual file. This is more overhead than just making a second direc-
tory link somewhere, but it’s more general. You don’t read and write these
symbolic-link files, but instead use special system calls just for symbolic links.

1.1.1.3 Special Files

A special file is tyfically some type of device (such as a CD-ROM drive or com-
munications link).

There are two principal kinds of device special files: block and character. Block
special files follow a particular model: The device contains an array of fixed-size
blocks (say, 4096 bytes each), and a pool of kernel buffers are used as a cache to
speed up 1/O. Character special files don’t have to follow any rules at all. They
might do I/O in very small chunks (characters) or very big chunks (disk tracks),
and so they’re too irregular to use the buffer cache.

The same physical device could have both block and character special files, and,
in fact, this is usually true for disks. Regular files and directories are accessed by
the file-system code in the kernel via a block special file, to gain the benefits of
the buffer cache. Sometimes, primarily in high-performance applications, more
direct access is needed. For instance, a database manager can bypass the file sys-
tem entirely and use a character special file to access the disk (but not the same
area that’s being used by the file system). Most UNIX systems have a character
special file for this purpose that can directly transfer data between a process’s
address space and the disk using direct memory access (DMA), which can result
in orders-of-magnitude better performance. More robust error detection is another
benefit, since the indirectness of the buffer cache tends to make error detection
difficult to implement.

A special file has an i-node, but there aren’t any data bytes on disk for the i-node
to point to. Instead, that part of the i-node contains a device number. This is an
index into a table used by the kernel to find a collection of subroutines called a
device driver.

When a system call is executed to perform an operation on a special file, the
appropriate device driver subroutine is invoked. What happens then is entirely up
to the designer of the device driver; since the driver runs in the kernel, and not as

2. Sometimes named pipes are considered special files, too, but we’ll consider them a category of their own.

A Whirlwind Tour of UNLX and Linux 5

a user process, it can access—and perhaps modify—any part of the kernel, any
user process, and any registers or memory of the computer itself. It is relatively
easy to add new device drivers to the kernel, so this provides a hook with which
to do many things besides merely interfacing to new kinds of I/O devices. It’s the
most popular way to get UNIX to do something its designers never intended it to
do. Think of it as the approved way to do something wild.

1.1.2 Programs, Processes, and Threads

A program is a collection of instructions and data that is kept in a regular file on
disk. In its i-node the file is marked executable, and the file’s contents are
arranged according to rules established by the kernel. (Another case of the kernel
caring about the contents of a file.)

Programmers can create executable files any way they choose. As long as the con-
tents obey the rules and the file is marked executable, the program can be run. In
practice, it usually goes like this: First, the source program, in some program-
ming language (C or C++, say), is typed into a regular file, often referred to as a
text file, because it’s arranged into text lines. Next, another regular file, called an
object file, is created that contains the machine-language translation of the source
program. This job is done by a compiler or assembler (which are themselves pro-
grams). If this object file is complete (no missing subroutines), it is marked
executable and may be run as is. If not, the /inker (sometimes called a “loader” in
UNIX jargon) is used to bind this object file with others previously created, possi-
bly taken from collections of object files called libraries. Unless the linker
couldn’t find something it was looking for, its output is complete and executable.’

In order to run a program, the kernel is first asked to create a new process, which
is an environment in which a program executes. A process consists of three seg-
ments: instruction segment,4 user data segment, and system data segment. The
program is used to initialize the instructions and user data. After this initializa-
tion, the process begins to deviate from the program it is running. Although
modern programmers don’t normally modify instructions, the data does get ' modi-

3. This isn’t how interpretive languages like Java, Perl, Python, and shell scripts work. For them, the executable is an in-
terpreter, and the program, even if compiled into some intermediate code, is just data for the interpreter and isn’t something
the UNIX kernel ever sees or cares about. The kernel’s customer is the interpreter.

4. In UNIX jargon, the instruction segment is called the “text segment,” but I'll avoid that confusing term.

6 Chapter 1: Fundamental Concepts

fied. In addition, the process may acquire resources (more memory, open files,
etc.) not present in the program.

While the process is running, the kernel keeps track of its threads, each of which
is a separate flow of control through the instructions, all potentially reading and
writing the same parts of the process’s data. (Each thread has its own stack, how-
ever.) When you’re programming, you start with one thread, and that’s all you get
unless you execute a special system call to create another. So, beginners can think
of a process as being single-threaded.’

Several concurrently running processes can be initialized from the same program.
There is no functional relationship, however, between these processes. The kernel
might be able to save memory by arranging for such processes to share instruction
segments, but the processes involved can’t detect such sharing. By contrast, there
is a strong functional relationship between threads in the same process.

A process’s system data includes attributes such as current directory, open file
descriptors, accumulated CPU time, and so on. A process can’t access or modify
its system data directly, since it is outside of its address space. Instead, there are
various system calls to access or modify attributes.

A process is created by the kernel on behalf of a currently executing process,
which becomes the parent of the new child process. The child inherits most of the
parent’s system-data attributes. For example, if the parent has any files open, the
child will have them open too. Heredity of this sort is absolutely fundamental to
the operation of UNIX, as we shall see throughout this book. This is different
from a thread creating a new thread. Threads in the same process are equal in
most respects, and there’s no inheritance. All threads have equal access to all data
and resources, not copies of them.

1.1.3 Signals

The kernel can send a signal to a process. A signal can be originated by the ker-
nel itself, sent from a process to itself, sent from another process, or sent on behalf
of the user.

5. Not every version of UNIX supports multiple threads. Theyre part of an optional feature called POSIX Threads, or
“pthreads,” and were introduced in the mid-1990s. More on POSIX in Section 1.5 and threads in Chapter 5.

