David Yevick

A First Course in
Computational Physics
and Object-Oriented
Programming with
C++

. e Pare - = BN -
. ~ - ot - L = < - - -
y = P e Rt A
L) : e X, =~ soe. SoUBPReINT L 2T
= b g et e e
h - = e e Sl e

PR AR K SAEY
www.wpcbj.com.cn




A First Course in
Computational Physics
and Ubject-Oriented
Programming with
-

u-lulr.q-ri:ﬂnlnln-n

=




A First Course in
Computational Physics and
Object-Oriented Programming
with C++

David Yevick




BBEMME (CIP) iR

B C ++ T 8 X R A FRF B 22 = A first course in computational
physics and objectoriented programming with C ++ ; 323/ (3£) B4
(Yevick,D. ) 2 . —Jtal: HFEBHRARLREAR, 2014. 10

ISBN 978 -7 -5100 - 8773 -8

[.Oit 1. O 0. OC#EF—RFRI—#H—_ V.0 04
T E A E 15 CIP B (2014) 575243085 5

+ & A First Course in Computational Physics and Object-Oriented Programming
with C ++

& . David Yevick

hoiE R HEWEM C -+ AN RN AR

RERE: BE XNF

H AR &: HAEBLRAFRILEAF

BN Rl E: =WiEEESARAR

% T HAEBHRARR AR (JEREAKAE 137 5 100010)

BRAEEIE: 010 -64021602, 010 - 64015659

HFEH kjb@ wpcbj. com. cn

FF A. 16 JF

Ep k. 27

MR &k: 2015483 A

RRALEIE: B 01 -2013 4909

978 -7 -5100 - 8773 -8 E #t: 99.00 J




A First Course in Computational Physics and
Object-Oriented Programming with C++

Because of its rich object-oriented features, C++ is rapidly becoming the
programming language of choice for science and engineering applications. This
text leads beginning and intermediate programmers step by step through the
difficult aspects of scientific coding, providing a comprehensive survey of
object-oriented methods.

Numerous aspects of modern programming practice are covered, including
object-oriented analysis and design tools, numerical analysis, scientific
graphics, software engineering, performance issues, and legacy software reuse.
Examples and problems are drawn from an extensive range of scientific and
engineering applications. An emphasis on the fundamental logical principles of
the language, combined with short, focused illustrations and discussions, helps
promote rapid learning. The book also includes a CD-ROM with a full set of free
programming and scientific graphics tools that facilitate individual learning and
reduce the time required to supervise code development in a classroom setting.

This unique text will be invaluable both to students taking a first or second
course in computational science and as a reference text for scientific
programmers.

DAvVID YEVICK is a leading scientist in the application of numerical modeling
to optical communication systems, notably guided electric field propagation in
waveguides and fibers, optical processes in semiconductors, and most recently
optical communication systems. Over the last 25 years, he has collaborated with
numerous industrial and government research establishments, including
spending four years with the IBM Center of Advanced Studies, Canada, on
practical applications of the VisualAge for C++ toolset.

Dr. Yevick has extensive teaching experience in both electrical engineering
and physics. Since 1999, he has been a full professor of physics at the
University of Waterloo, Ontario having previously held positions in the
Electrical and Computer Engineering Departments of Queen’s University at
Kingston and the Pennsylvania State University, in the Solid State Physics
Department of Lunds Universitet and at the Institutet for Optisk Forskning,
Stockholm. He has authored or co-authored over 120 refereed journal articles.
Dr. Yevick is a fellow of the American Physical Society, the Institute of
Electrical and Electronics Engineers, and the Optical Society of America and is
a registered Professional Engineer, Ontario.
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Chapter 1
Introduction

This textbook is the result of seven years of experience with teaching scientific
programming in both science and engineering departments. The book has a single,
clearly defined goal —to convey as broad an understanding of the entire scientific
computing field as possible within a single term course. Accordingly, while the
C++ programming language is explained concisely, its conceptual foundation is
emphasized. Once this framework is understood, the complex language syntax
can be far more easily retained. Further, all features of modern programming of
relevance to scientific programming are surveyed with emphasis on strategies for
simplifying coding. Free software tools are included that minimize the technical
hurdles of coding and running programs.

1.1 Objective

As stated above, this textbook presents a broad introduction to modern scientific
programming. This includes numerical analysis, object-oriented programming,
scientific graphics, software engineering, and the modeling of advanced physical
systems. Consequently, knowledge of the material will provide sufficient back-
ground to enable the reader to analyze and solve nearly all normally encountered
scientific programming tasks.

1.2 Presentation

This text is concise, focusing on essential concepts. Examples are intentionally
short and free of extraneous features. To promote retention, the book repeats
key topics in cycles of gradually increasing difficulty. Further, since the process
of learning computer language shares many similarities with that of acquiring a
spoken language, the most important sample program segments are highlighted in
gray. Memorizing these greatly decreases the time required to achieve proficiency
in C++ programming.



