David Yevick

A First Course in
Computational Physics
and Object-Oriented
Programming with
C++

. e Pare - = BN -
. ~ - ot - L = < - - -
y = P e Rt A
L) : e X, =~ soe. SoUBPReINT L 2T
= b g et e e
h - = e e Sl e

PR AR K SAEY
www.wpcbj.com.cn

A First Course in
Computational Physics
and Ubject-Oriented
Programming with
-

u-lulr.q-ri:ﬂnlnln-n

=

A First Course in
Computational Physics and
Object-Oriented Programming
with C++

David Yevick

BBEMME (CIP) iR

B C ++ T 8 X R A FRF B 22 = A first course in computational
physics and objectoriented programming with C ++ ; 323/ (3£) B4
(Yevick,D.) 2 . —Jtal: HFEBHRARLREAR, 2014. 10

ISBN 978 -7 -5100 - 8773 -8

[.Oit 1. O 0. OC#EF—RFRI—#H—_ V.0 04
T E A E 15 CIP B (2014) 575243085 5

+ & A First Course in Computational Physics and Object-Oriented Programming
with C ++

& . David Yevick

hoiE R HEWEM C -+ AN RN AR

RERE: BE XNF

H AR &: HAEBLRAFRILEAF

BN Rl E: =WiEEESARAR

% T HAEBHRARR AR (JEREAKAE 137 5 100010)

BRAEEIE: 010 -64021602, 010 - 64015659

HFEH kjb@ wpcbj. com. cn

FF A. 16 JF

Ep k. 27

MR &k: 2015483 A

RRALEIE: B 01 -2013 4909

978 -7 -5100 - 8773 -8 E #t: 99.00 J

A First Course in Computational Physics and
Object-Oriented Programming with C++

Because of its rich object-oriented features, C++ is rapidly becoming the
programming language of choice for science and engineering applications. This
text leads beginning and intermediate programmers step by step through the
difficult aspects of scientific coding, providing a comprehensive survey of
object-oriented methods.

Numerous aspects of modern programming practice are covered, including
object-oriented analysis and design tools, numerical analysis, scientific
graphics, software engineering, performance issues, and legacy software reuse.
Examples and problems are drawn from an extensive range of scientific and
engineering applications. An emphasis on the fundamental logical principles of
the language, combined with short, focused illustrations and discussions, helps
promote rapid learning. The book also includes a CD-ROM with a full set of free
programming and scientific graphics tools that facilitate individual learning and
reduce the time required to supervise code development in a classroom setting.

This unique text will be invaluable both to students taking a first or second
course in computational science and as a reference text for scientific
programmers.

DAvVID YEVICK is a leading scientist in the application of numerical modeling
to optical communication systems, notably guided electric field propagation in
waveguides and fibers, optical processes in semiconductors, and most recently
optical communication systems. Over the last 25 years, he has collaborated with
numerous industrial and government research establishments, including
spending four years with the IBM Center of Advanced Studies, Canada, on
practical applications of the VisualAge for C++ toolset.

Dr. Yevick has extensive teaching experience in both electrical engineering
and physics. Since 1999, he has been a full professor of physics at the
University of Waterloo, Ontario having previously held positions in the
Electrical and Computer Engineering Departments of Queen’s University at
Kingston and the Pennsylvania State University, in the Solid State Physics
Department of Lunds Universitet and at the Institutet for Optisk Forskning,
Stockholm. He has authored or co-authored over 120 refereed journal articles.
Dr. Yevick is a fellow of the American Physical Society, the Institute of
Electrical and Electronics Engineers, and the Optical Society of America and is
a registered Professional Engineer, Ontario.

A First Course in Computational Physics and Object-Oriented Pro-
gramming with C ++ (978-0-521-82778-2) by David Yevick,
first published by Cambridge University Press 2005

All rights reserved. ‘

This reprint edition for the People’s Republic of China is pub-
lished by arrangement with the Press Syndicate of the University of
Cambridge, Cambridge, United Kingdom.

© Cambridge University Press & Beijing World Publishing Corpo-
ration 2014

This book is in copyright. No reproduction of any part may take
place without the written permission of Cambridge University Press
or Beijing World Publishing Corporation.

This edition is for sale in the mainland of China only, excluding
Hong Kong SAR, Macao SAR and Taiwan, and may not be
bought for export therefrom.

HRAURFEARMERAHE, FaEEE. B
HTEXEFEEE, AEHO,

To my parents, George and Miriam, who were the first to teach me
physics and mathematics, my wife Susan for her unending support

and to Ariela, Hannah and Aaron who | hope one day will find this
book useful

Contents

Part1 C++ programming basics

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2 Installing and running the Dev-C++ programming environment

2.1
22
23
24
2:5
2.6
2.7

Objective

Presentation

Why C++

C++ standards

Summary

How to use this text

Additional study aids

Additional and alternative software packages

Compiling and running a first program
Using the Dev-C++ debugger
Installing DISLIN and gsl

A first graphics program

The help system

Linux alternatives

Assignment

3 Introduction to computer and software architecture

3.1
3.2
3.3
34
35

Computational methods

Hardware architecture

Software architecture

The operating system and application software
Assignments

4 Fundamental concepts

4.1
42
43
44
4.5

Overview of program structure
Tokens, names, and keywords
Expressions and statements
Constants, variables, and identifiers
Declarations, definitions, and scope

page 1

000 NN AW WL Ww

10
10
12
13
14
15
16
16

17
17
18
20
23
23

25
25
25
26
26
27

vii

viii

Contents

4.6 rvalues and Ivalues

4.7 Block structure

4.8 The const keyword

4.9 Operators — precedence and associativity
4.10 Formatting conventions

4.11 Comments

4.12 Assignments

5 Writing a first program
5.1 The main() function
5.2 Namespaces

5.3 #include Statements

5.4 Input and output streams
5.5 File streams

5.6 Constant and variable types
5.7 Casts

5.8 Operators

5.9 Control flow

5.10 Functions

5.11 Arrays and typedefs

5.12 A first look at scientific software development

5.13 Program errors
5.14 Numerical errors with floating-point types
5.15 Assignments

6 An introduction to object-oriented analysis

6.1 Procedural versus object-oriented programming

6.2 Problem definition

6.3 Requirements specification

6.4 UML diagrams

6.5 Use case diagram

6.6 Classes and objects

6.7 Object discovery

6.8 Sequence and collaboration diagrams
6.9 Aggregation and association

6.10 Inheritance

6.11 Object-oriented programming approaches
6.12 Assignments

7 C++ object-oriented programming syntax
7.1 Class declaration

7.2 Class definition and member functions
7.3 Object creation and polymorphism

28
28
29
30
31
32
33

37
37
37
38
39
40
41
44
45
46
47
47
48
51
53
55

62
62
65
66
66
67
68
71
72
74
75
78
79

&3
83
83
86

7.4
7.5
7.6
7.7
7.8
7.9

Contents

Information hiding
Constructors
Wrappering legacy code
Inheritance

The ‘protected’” keyword
Assignments

8 Control logic and iteration

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

The bool and enum types

Logical operators

if statements and implicit blocks

else, else if, conditional and switch statements
The exit() function

Conditional compilation

The for statement

while and do. .. while statements

The break and continue statements
Assignments

9 Basic function properties

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

Principles of function operation
Function declarations and prototypes
Overloading and argument conversion
Built-in functions and header files
Program libraries

Function preconditions and postconditions — the assert statement
Multiple return statements

Functions and global variables

Use of const in functions

Default parameters

Inline functions

Modular programming

Recursive functions

Assignments

10 Arrays and matrices

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Data structures and arrays

Array definition and initialization
Array manipulation and memory access
Arrays as function parameters
Returning arrays and object arrays
const arrays

Matrices

87
89
91
92
94
95

104
104
106
107
108
109
109
110
111
112
112

119
119
121
121
122
124
128
130
130
131
132
132
133
134
134

140
140
141
142
144
145
146
146

Contents

10.8 Matrix storage and loop order
10.9 Matrices as function arguments
10.10 Assignments

11 Input and output streams

11.1 The iostream class and stream manipulators
11.2 File streams

11.3 The string class and string streams

11.4 The toString() class member

11.5 The printf function

11.6 Assignments

Part I Numerical analysis

12 Numerical error analysis — derivatives

12.1 The derivative operator

12.2 Error dependence

12.3 Graphical error analysis

12.4 Analytic error analysis — higher-order methods
12.5 Extrapolation

12.6 The derivative calculator class

12.7 Assignments

13 Integration

13.1 Discretization procedures
13.2 Implementation

13.3 Discretization error

134 Assignments

14 Root-finding procedures
14.1 Bisection method

14.2 Newton’s method

14.3 Assignments

15 Differential equations
15.1 Euler’s method

15.2 Error analysis

15.3 The spring class
15.4 Assignments

16 Linear algebra
16.1 Linear equation solvers

147
150
150

158
158
161
163
165
167
167

173

175
175
177
177
179
179
180
182

183
183
184
188
189

191
191
193
194

196
196
198
199
201

203
203

Contents

16.2 Errors and condition numbers 206
16.3 Eigenvalues and iterative eigenvalue solvers 207
16.4 Assignments 209
Part III Advanced object-oriented programming 215
17 References 217
17.1 Basic properties 217
17.2 References as function arguments 218
17.3 Reference member variables 219
17.4 const reference variables 220
17.5 Reference return values 221
17.6 Assignments 222
18 Pointers and dynamic memory allocation 227
18.1 Introduction to pointers 228
18.2 Initializing pointer variables 228
18.3 The address-of and dereferencing operators 229
18.4 Uninitialized pointer errors 230
18.5 NULL and void pointers 230
18.6 Dangling pointers 231
18.7 Pointers in function blocks 232
18.8 The const keyword and pointers 232
18.9 Pointer arithmetic 234
18.10 Pointers and arrays 234
18.11 Pointer comparisons 234
18.12 Pointers to pointers and matrices 235
18.13 String manipulation 235
18.14 Static and dynamic memory allocation 237
18.15 Memory leaks and dangling pointers 239
18.16 Dynamic memory allocation within functions 241
18.17 Dynamically allocated matrices 242
18.18 Dynamically allocated matrices as function arguments

and parameters 243
18.19 Pointer data structures and linked lists 244
18.20 Assignments 248
19 Advanced memory management 261
19.1 The this pointer 261
19.2 The friend keyword 262
19.3 Operators 263

19.4 Destructors 265

xi

xii

Contents

19.5
19.6
19.7

20 The static keyword, multiple and virtual inheritance,

Assignment operators
Copy constructors
Assignments

templates, and the STL library

20.1
20.2
20.3
204
20.5
20.6

20.7
20.8
20.9

Static variables

Static class members

Pointer to class members

Multiple inheritance

Virtual functions

Heterogeneous object collections and runtime
type identification

Abstract base classes and interfaces

Virtual inheritance

User-defined conversions

20.10 Function templates

20.11 Templates and classes

20.12 The complex class

20.13 The standard template library
20.14 Structures and unions

20.15 Bit fields and operators

20.16 Assignments

21 Program optimization in C++

21.1
21.2
213
21.4
215
21.6
21.7

Compiling

Critical code segments

Virtual functions

Function pointers and functors
Aliasing

High-performance template libraries
Assignments

Part IV Scientific programming examples

22 Monte Carlo methods

221
222
223
224
225
22.6

Monte Carlo integration

Monte Carlo evaluation of distribution functions
Importance sampling

The metropolis algorithm

Multicanonical methods

Assignments

267
269
271

286
286
287
288
288
289

291
292
293
294
295
296
298
299
303
305
306

319
319
319
321
326
327
327
329

331

333
333
334
339
343
347
352

23 Parabolic partial differential equation solvers

23.1 Partial differential equations in scientific applications
23.2 Direct solution methods

23.3 The Crank—Nicholson method

234 Assignments

Appendix A Overview of MATLAB

Appendix B The Borland C++ Compiler
B.1 Borland C++ installation

B.2 Compiling and running a first program
B.3 Installing the optional program editor
B.4 Using the Borland turbo debugger

B.5 Installing DISLIN

B.6 A first graphics program

B.7 The help system

Appendix C The Linux/Windows Command-Line
C++ Compiler and Profiler

Appendix D Calling FORTRAN programs from C++

Appendix E C++ coding standard
E.l Program design language
E.2 Comments

E.3 Layout

E.4 Continuation lines

E.5 Constants and literals

E.6 Variables and definitions
E.7 Functions

E.8 Operators

E.9 Classes

E.10 Typedefs

E.11 Macros

E.12 Templates

E.13 Control structures

References and further reading

Index

Contents

354
354
356
359
363

365

371
371
373
375
377
378
379
380

381

384

387
387
388
388
389
389
389
390
390
390
391
391
391
391

393
398

xiii

Part |
C++ programming basics

Chapter 1
Introduction

This textbook is the result of seven years of experience with teaching scientific
programming in both science and engineering departments. The book has a single,
clearly defined goal —to convey as broad an understanding of the entire scientific
computing field as possible within a single term course. Accordingly, while the
C++ programming language is explained concisely, its conceptual foundation is
emphasized. Once this framework is understood, the complex language syntax
can be far more easily retained. Further, all features of modern programming of
relevance to scientific programming are surveyed with emphasis on strategies for
simplifying coding. Free software tools are included that minimize the technical
hurdles of coding and running programs.

1.1 Objective

As stated above, this textbook presents a broad introduction to modern scientific
programming. This includes numerical analysis, object-oriented programming,
scientific graphics, software engineering, and the modeling of advanced physical
systems. Consequently, knowledge of the material will provide sufficient back-
ground to enable the reader to analyze and solve nearly all normally encountered
scientific programming tasks.

1.2 Presentation

This text is concise, focusing on essential concepts. Examples are intentionally
short and free of extraneous features. To promote retention, the book repeats
key topics in cycles of gradually increasing difficulty. Further, since the process
of learning computer language shares many similarities with that of acquiring a
spoken language, the most important sample program segments are highlighted in
gray. Memorizing these greatly decreases the time required to achieve proficiency
in C++ programming.

