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Introduction

This book includes four chapters, and mainly introduces the contents of the basic computational
techniques of linear differential equation, the qualitative or geometric approaches for planar
differential systems, the method of computation and analysis of the chaotic system, and several
methods of feedback control, backstepping control and generalized synchronization for chaotic
systems.

This book presents an introduction to chaos in dynamical system and fundamental theories of
ordinary differential equations. It will be of interest to advance undergraduates in mathematics and
graduate students in engineering taking courses in dynamical systems, nonlinear dynamics, nonlinear
systems as well as chaos.
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Preface

This book presents an introduction to chaos in dynamical system and fundamental theories of
ordinary differential equations. Considering the fact that many readers have unclear concepts
about chaotic dynamical systems and some mathematical concepts are also abstract, this
book mainly focuses on the explanation of the systems’ basic concepts, with detailed
examples and diagrams. It also attaches great importance to the calculational and analytic
methods of the chaos systems and the application of their theories. It will be of interest to
advanced undergraduates in mathematics and graduate students in engineering taking courses
in dynamical systems, nonlinear dynamics, nonlinear systems as well as chaos.

In chapter 1, the basic computational techniques of linear differential equation are discussed.
For nonlinear differential equations, their general solutions are rarely obtained. Hence, the
chapter 2 introduces the qualitative or geometric approaches for planar differential systems,
whose materials mainly include equilibrium points, linearization, periodic orbits and
Hamiltonian systems. It is the foundation to understand the chaos in dynamical systems. In
chapter 3, the basic concepts of chaos are presented. The attractors, Lyapunov exponents,
center manifolds, Hopf bifurcation, invariant algebraic surfaces and infinite singular points
analysis of chaotic systems are shown. In its final chapter, several of feedback control,
backstepping control and generalized synchronization for chaotic systems are reported. We
hope this book will produce a very good introductory effect for beginners. Due to the
shallow knowledge of the authors, the comments and opinions will be expected and
welcomed from readers, experts and scholars by this email williamwangz@ 126.com.

The book’s contents mainly derive from our research papers and reports over the recent years.
In order to describe the basic theories and concepts vividly, the authors also draw on books
written by other scholars and experts. Among them are Jack Hale’s Theory of Functional
Differential equations, Lawrence Perko’s Differential Equations and Dynamical Systems,

D.W. Jordan’s Nonlinear Ordinary Differential Equations, R.C. Robinson’s Introduction to



Dynamical Systems: Discrete and Continuous, K.T. Alligood’s Chaos: An Introduction to
Dynamical Systems, which have a greater influence on its formation. The authors appreciate
their help very much. Meanwhile, I also want to express my gratitude to my tutor Lin
Xiaolin (Shaanxi University of Science and Technology). It is him who leads me into the
differential equation and the chaotic dynamic system.

The arrangement of its contents is schemed by Wang Zhen with its first chapter and second
chapter written by Xi Xiaojian and the third chapter and the fourth one by Wang Zhen. It is
Wang Zhen who shoulder the responsibility to correct and modify its knowledge points.

The publication of this book is supported by the Scientific Research Foundation of Xijing
University. The work described in this book is supported by the grants from the Natural
Science Foundation of Shaanxi Province (No. 2011EJ001), the Scientific Research Program
funded by Shaanxi Provincial Education Department (Nos.12JK1077,12JK1073), and the
Scientific Research Foundation of Xijing University (Nos. 090107, 100106, XJ120107,
XJ120232, XJ130114, XJ130245, XJ130244), partly.

Finally, we would like to acknowledge our students and colleagues who read and commented
on various versions and parts of the manuscript. We also offer thanks to professor Wei
Zhaochao (China University of Geosciences (Wuhan)), professor Wu Kuilin (Guizhou
University) and especially our families for their patience and support while this book was
being prepared. We wish to express our appreciation to Xidian University Press for giving us
this opportunity to publish this book, and thank the editors for their help. It is my friend and
colleague, Song Bingchang (Xijing University), who gives valuable advice on the book’s

written English and we appreciate his efforts very much.

Wang Zhen
Xijing Yuan, 2014
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INTRODUCTION TO CHAOS
CHAPTER 1 Computational Techniques of Linear Differential Equation

CHAPTER 1

Computational Techniques of Linear Differential Equation

In this chapter, we introduce the basic computational methods for linear differential
equation which includes the first order DE, second order DE and linear system.

1.1 Basic concepts

Let UcR™, VcR” and ke N, then C'(U,V) denotes the set functions
U —V having continuous derivates up to order k. In addition, we will abbreviate
cU,v)=C'(U,V) and C*U)=C"(U,R).

In the sciences and engineering, mathematical models are developed to aid in the
understanding of physical phenomena. These models often yield an equation that
contains some derivatives of an unknown function. Such an equation is called a
differential equation. )

If the unknown function is a function of a single variable, the differential equation is
called an ordinary differential equation (ODE), while if the unknown function is a
function of several variables, the differential equation is called a partial differential
equation (PDE).

- Example 1
Eil=5x+3 (1)
dx
d?y dy]z
e —= 42| = | =1 2
dx* (dx 2
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The order of a differential equation is the order of the highest derivative that appears
in the equation.
More generally, the equation
F(t,u(),u'(t),,u™ (1)) =0 4)
is an ordinary differential equation of the nth order. Eq. (4) expresses a relation
between the independent variable 7 and the value of the function « and its first n
derivatives u, u’, ..., u'™.Itis convenient and customary in differential equations
towrite y for u(z),with y, ¥, ..., y" standing for wu(t),u’(t),--,u'"”(t). Thus
Eq. (4) is written as
Ft,y, ', y")=0 ()
In general, a DE of order n can be written as Eq. (5). This is called a DE in implicit
form. In many cases, we can solve for y"” and write the DE in explicit form

YU =ft,y,y, e y" ) (6)
A classical ODE is a relation of the form
F(t,x,x,-,x")=0 (7)

For the unknown function xe C"(J), JcR. Here Fe C(U) with U an open
subset of R"7?. One frequently calls ¢ the independent variable and x the
dependent variable. A solution of Eq. (7) is a function @& C"(/), where I < J is
an interval, such that

F(t,@t),¢' (1), (1)) =0 (8)
forall ze 1. This implicitly implies (r,@(1),¢'(¢),--,0()")e U forall te .
A function ¢(t) that when substituted for x in Eq. (7) satisfies the equation for all
¢t inthe interval 7 is called an explicit solution to the equation on 7.
Arelation G(7,x)=0 is said to be an implicit solution to Eq. (7) on the interval /
if it defines one or more explicit solutions on 7 .
A DE of the form

>>2<<
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a, )y +a, Oy ++ay()y=g() ©)

is called a linear DE. A DE which is not linear is called nonlinear. If g(¢)=0, the
linear DE is said to be homogenebus, otherwise it is said to be non-homogeneous. If
all the @, () are constants, it is called a linear DE with constant coefficients. If the
equation has the form Eq. (5), we can say that the Eq. (5) is linear if F is a linear

function of the variables y,y’,---, y.

Example 2 Show that ¢(t)=t" is a solution of the DE x"+21x* =0.

Solution Differentiating, we get ¢'(r)=-2¢t". So forall t#0,
@) +2p(t)=-2t"+2t-(t7) ==2"+2t7 =0

Thus ¢(#) is a solution to Example 2 on (0,+e0) and also on (—e0,0).
Note By solving a DE, we mean finding all solutions to the DE (and determine the
(largest) interval, called the interval of validity on which the DE is satisfied).
Remark (1) It is straightforward to check that ¢@(t)=0 and ¢@.(1)=("+c)™
(where c¢ is a constant) are solution to example 2. Moreover, it can be shown (using
the existence and uniqueness theorem) that there is no more solution. Note that ¢ is

a solution valid on R and that
(i) if ¢>0, ¢ isasolutionon R.

(i) if ¢=0, ¢, isasolutiononon (0,+e) and also on (—o0,0).

(iii) if c=—p<0, @, isasolutionon (=oo,—[p), (=/p,\[p) and (Jp,+eo).

(2) Example 2 has infinitely solutions, namely the one parameter family (¢,)_,
together with the trivial solution.

(3) The graphs of any pair of solutions have no intersection (uniqueness of
solution).

(4) If we add an additional condition to the solution, for example, x(0)=-1, then

we get the unique solution ¢ ,(t)=(¢>~1)"" and the solution is valid for —1<z<]1.

>>3<<



We have seen in the previous section that the case of real valued functions if not
enough and we should admit the case x:R —R™. This leads us to systems of
DDEs

" = [, %8, 2" "), i=Lem (10)

An nth order initial value problem (IVP) is an nth order DE together with n

initial conditions.

4 (n)
s A A LT, -0
{F(txx x") a1

X(to) = xo,x,(to) = 'xl [ "x("-”(to) = ‘xn—l

A solution to the IVP is a solution to the DE on an interval containing 7, (as interior
point) that satisfies all the initial conditions.
A differential equation along with subsidiary conditions on the unknown function
and its derivatives, all given at the same value of the independent variable,
constitutes an initial value problem. The subsidiary conditions are initial
conditions. If the subsidiary conditions are given at more than one value of the
independent variable, the problem is a boundary value problem (BVP) and the
conditions are boundary conditions.

Example 3 The problem x"+2x"=¢', x(nm)=1, x'(x)=2 is an IVP, because
the two subsidiary conditions are given at tr=m. The problem x"+2x"=e¢',
x(0)=1, x(1)=1 is a BVP, because the two subsidiary conditions are at the

different values t=0 and r=1.

1.2 First order linear differential equation

1.2.1 Separable equation

A simple class of first order differential equation that can be solved using integration
is the class of separable equation. There are equations

>>4<<
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%=f(x,y) (1)

that can be rewritten to isolate the variables x and y (together with their
differentials dx and dy) on opposite sides of the equations, as in

h(y)dy = g(x)dx (2)
So the original right hand side f(x,y) must have the factored form

1
Y= — 3
f(x,y) g(x)h(y) (3)

More formally, we write p(y)= %) and present the following definition.
Ly
If the right hand side of the equation
dy
— x,
& f(x,y)

can be expressed as a function g(x) that depends only on x times a function
p(y) that depends only on y, then the differential equation is called separable.

In other words, a first order equation is separable if it can be written in the form

b g(x)p(y)

dx
Method for solving separable equation to solve the equation
dy
—=g(x)p(y -
i g(x)p(y) 4)

Multiply by dx and by A(y)= to obtain

p(y)
h(y)dy = g(x)dx
Then integrate both sides

[r(dy = [godx

H(y)=G(x)+C &)

>>5<<



where we have merged the two constants of integration into a single symbol C. The
last equation gives an implicit solution to the differential equation.
Note Constant functions y=c¢ such that p(c)=0 are also solutions to (4),

which may or may not be included in (5).

- Example 1 Solve the b x—25 ;
ey
Solution Separate the variables and rewrite the equation in the form
y'dy = (x=5)dx

Integrating, we have
[y?dy = [(x—5)dx

3 2
L =X _sp4c
3 2

and solving this last equation for y gives

2 3
y=(%—15x+3C)

Since C' is a constant of integration that can be any real number, 3C can also be
any real number. Replacing 3C by the
single symbol K, we then have

1
2 3
y=(%—15x+1<j

If we wish to abide by the custom of letting
C represent an arbitrary constant, we can
go one step further and use C instead of

K in the final answer. This solution family
18 graphed in Figure 1. Figure |  Family of solutions for Example 1

>>6<<
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1.2.2 Linear equation

A first order linear DE is of the form

P()Y +Q(t)y=R(t), a<t<b (6)
where P, Q, R are functions on (a,b).
Suppose P never vanishes on (a,b) (that is P(r)#0 for all 7€ (a,b) ), then
dividing both sides by P(t), (6) reduces to the standard form

y+pt)y=g(), a<t<b (7)

where p, g are functions on (a,b). If p,ge C(a,b), then we can find solutions
to the DE valid in whole internal (a,b).
To solve (7), we try to multiply both sides by a function = u(t) (which never
vanishes on (a,b)), so that left hand side becomes

d
E[ﬂ(t )yl

For this, we need
H(Oy+u®)y =u@®)y +u)p)y
That is
w1 (1) = p(t)u(t)

H(1)

By inspection, we see that u(t)=e is a suitable candidate, where H is an

antiderivative for p . The existence of H is guaranteed by the continuity of p, for
example, fix ¢, € (a,b), then the function H given by H(t)= J., p(s)ds is an
Ty

antiderivative for p.
Now multiplying (7) by the above u(t), we get
U@y +u®) p0)y = ut)g(t) (8)

which can be written as

d
Ew(t)y] =ut)g(t)

Integrate and then divide both sides by (), we obtain

>>T7<<



1
t)y=——-o t)g(t)dt
y(0) u(nf“( )8

Since u(t) never vanishes on (a,b), solutions to (8) are also solutions to (7).
Theorem 1 The general solution for the DE

Y+ pt)y=g()
where p, g€ C(a,b), is

y(t) = e—Hm[ Ie”‘”g(t)dt]

where H is an antiderivative for p on (a,b).

H()

The function u(t)=e is called an integrating factor and the method is called the

integrating factor method.
Remark Any non-zero multiple of # is also an integrating factor. Thus it doesn't

. . . . . (1) d
matter which antiderivative we take and we may write () = eI' o

Example 2 Find the general solution to the DE
y +2ty=t
Solution The functions p and g, where p(1)=2t and g(r)=t, are continuous
on R.An antiderivative H for p is H(t)=1". Multiplying both sides of the DE
by u(t)=e"" yields
e y+2e y=te"
Integrating both sides, we get
2 2 l 2
e y=|te'dt=—=e" +C
v=| >
The general solution is
y(t)=%+Ce_'1,—°°<t < oo

Note that in the general solution given in theorem 1, there is a constant of integration
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in the integral Ie” “g(t)dr . This constant can be determined if an initial condition is

specified.
Theorem 2 The initial value problem (IVP)

{y'+ p)y=2g(1)
() =y,

where p,ge C(a,b), t,€ (a,b) and y,€ R, has a unique solution valid on (a,b).
Proof Taking H(t)= I,I p(s)ds as an antiderivative for p, the general solution

to the DE can be written as

foro

_ —I’;p(s)ds 1 ds
y(it)=e J; gluye du+C

Putting y(7,) = y,, we get C = y,. Thus the unique solution is

- (s5)ds ! (s)ds

Example 3 = Solve the following IVP

{ty'+2y =212+t
y()=3

and determine the (largest) interval on which the DE is satisfied.
Solution First we rewrite the DE as

y'+%y=2t+1 )
. 2
The functions p and g, where p(t)=——t- and g(t)=2r+1, are continuous on
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