/4

"HZ Books

LM T bR i

China Machine Press

Richard A. Shore

Seconp EbpiTioN

"8 Richard A Shore ¥
_ RERKZE '

R FiZ%E

(ZRIZhR - 5B2hR)

Logic for Applications

Saeth ? | (Second E‘:’dit‘ior;‘w) f.')

il i b 9

Anil'Nerode =~
BERXKE

(%) Richard A. Shore &
RERKE

1 m_mwﬁa_
Chmo Ma?hine?rejssa

Logic for Applications, Second Edition (ISBN 0-387-94893-7) by Anil Nerode and Richard A.
Shore.

Copyright © 1997, 1993 Springer-Verlag New York, Inc.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in
the People’s Republic of China only and not for export therefrom.

All rights reserved.

(PR THEARFKFERN (AP EEE. BTN EGQEX) B
KAT.

[BIUERE . BELLER.
FHERmE AR RIARIESR

EHFEABICS: BF: 01-2006-3886
BHER®mE (CIP) #iE

FLRZH (FXhR - 5E20R) / (3£) EPHE (Nerode, A.) %, —dbxt: HUM Tk HHAR
#t, 20069

(BHIFRRASE)
4R : Logic for Applications, Second Edition
ISBN 7-111-19772-0

LR TR M. EF%H -3 IV.0141
b iR A E B CIP B = (2006) 450965895

LB Tl HHAR AL (s daskix & 5 oA R522'S WBBc4HED 100037)
TSR BiRE

=T AREEN A FRA R ENRI - FHEBE T RATRET
2006459 H 5 1 kit 1R NI

170mm x 242mm - 29.25E[13k

Efr: 49.007T

FUAAS, A @IT. BT, SROT, dAddt ki
At ek: (010) 68326294

Preface

In writing this book, our goal was to produce a text suitable for a first course
in mathematical logic more attuned than the traditional textbooks to the re-
cent dramatic growth in the applications of logic to computer science. Thus, our
choice of topics has been heavily influenced by such applications. Of course, we
cover the basic traditional topics: syntax, semantics, soundness, completeness
and compactness as well as a few more advanced results such as the theorems of
Skolem-Lowenheim and Herbrand. Much of our book, however, deals with other
less traditional topics. Resolution theorem proving plays a major role in our
treatment of logic especially in its application to Logic Programming and PRoO-
LOG. We deal extensively with the mathematical foundations of all three of these
subjects. In addition, we include two chapters on nonclassical logics — modal
and intuitionistic — that are becoming increasingly important in computer sci-
ence. We develop the basic material on the syntax and semantics (via Kripke
frames) for each of these logics. In both cases, our approach to formal proofs,
soundness and completeness uses modifications of the same tableau method in-
troduced for classical logic. We indicate how it can easily be adapted to various
other special types of modal logics. A number of more advanced topics (includ-
ing nonmonotonic logic) are also briefly introduced both in the nonclassical logic
chapters and in the material on Logic Programming and PROLOG.

The intended audience for this text consists of upper level undergraduate and
beginning graduate students of mathematics or computer science. We assume a
basic background in abstract reasoning as would be provided by any beginning
course in algebra or theoretical computer science as well as the usual familiarity
with informal mathematical notation and argument as would be used in any
such course. Basic set-theoretic terminology for orderings and trees is given in
the opening section 1.1.1. We also supply a systematic treatment of elementary
set theory in Chapter VI. This material can be used as a reference as needed or
covered as part of the course at either its beginning or end.

If taught as a course for advanced undergraduates, essentially all the material in
Chapters I-III, together with a reasonable amount of programming in PROLOG,
can be covered in one semester with three hours of lectures a week. When teach-
ing it in this way, we have had (and recommend) an additional weekly section

iv

Preface

devoted to homework problems and programming instruction. Alternatively, the
material on resolution theorem proving and Logic Programming can be replaced
by the chapters on modal and intuitionistic iogic to get a rather different course.
For two quarters, one can simply add on one of the nonclassical logics to the
first suggested semester course. We have deliberately made these two chapters
entirely independent of one another so as to afford a choice. There is, however,
much similarity in the developments and, if both are covered, the corresponding
sections of the second chapter can be covered more quickly. At the graduate
level, essentially the whole book can be covered in a semester.

The text develops propositional logic in its entirety before proceeding to predi-
cate logic. However, depending on the background of the class and the predilec-
tions of the instructor, it is possible to combine the treatments. Indeed, for a
graduate course or with students with some previous exposure to propositional
logic and truth tables, this may well be better. To follow such a path, begin
with 1.1-2 and then move on to II.1-4. If planning to introduce PROLOG and
develop the foundations of Logic Programming, I1.5 can be used to explain the
syntax and semantics of PROLOG. To start the students on actual programming,
an informal introduction to PROLOG implementation and programming can be
continued in the recitation section (parts of 1.10 are relevant here). Of course,
the theoretical underpinnings must wait for the formal development of resolu-
tion and unification. With or without the Logic Programming, it is now possible
(based on the tableau approach) to prove the soundness and completeness theo-
rems for predicate logic in I1.6-7 and to continue through the proof of Herbrand's
theorem in 11.10. A Hilbert-style proof system is presented without proving any

results in 1.7 and I1.8.

The resolution-style proof system on which PROLOG is based is more intimately
tied to its development in the propositional case, as the basic theorems are proven
by using Herbrand’s theorem to reduce predicate logic results to corresponding
ones of propositional logic. Thus, it is necessary, if covering this material, to do
the propositional case first. The sections needed for the treatment of PROLOG
are 1.8, 1.10 and II.11-13. The refinements of resolution considered in 1.9 are
strictly optional. While linear resolution (II.14) is highly relevant to PROLOG, the
completeness theorem is one of the most difficult in the text. We have therefore
provided in III.1 an alternate approach to the corresponding results for Horn
logic and PROLOG that requires only the basic definitions of linear resolution
(I1.14.1-3).

A diagram of the logical dependencies between sections of the text (except for
Chapter VI) is given on the facing page. Unless indicated otherwise by an arrow,
the order of dependency runs right to left. Dotted lines (as from the propositional
to predicate sections for classical logic) indicate relevance but not strict logical
dependence. We should note that the very first section, 1.1, simply collects defi-
nitions and facts about orderings and trees that are needed at various points in
the text. This material can be covered at the beginning or inserted as needed. In
particular, Konig's lemma, 1.1.4, is not needed until the treatment of complete

\4

Preface

011

LA

vi

Preface

systematic tableaux in 1.4. Similarly, the material on set-theoretic procedures in
Chapter VI (new in this edition) can be covered at any point. Only one section
(§6) assumes a familiarity with predicate logic and that is simply to list a formal
version of the axioms. In this chapter, §§1-5 and §7 contain the basic set theory
needed for this book and most undergraduate courses. The remaining sections,
§88-11, develop the theory of infinite (and even uncountable) ordinals, cardinals

“and transfinite recursion including some versions of the axiom of choice. This

material should suffice as a background in set theory for most graduate courses
in mathematics and computer science but is not used in the rest of this book. .

At various other points in the text, certain paragraphs or even whole sections
that are not needed for the later material are marked as optional by an asterisk
(*). They are also printed in smaller type and with wider margins to set them
off from the main line of development. In addition, there are three important
possible exceptions to the order indicated above; these are of particular relevance
for those courses not including very much about PROLOG.

The first exception also needs a warning. Our basic approach to logic does not in-
clude a specialized equality predicate. Although no longer the common approach
in texts on mathematical logic, this is the right way to develop the subject
to do resolution theorem proving, Logic Programming and PROLOG. We have
thus relegated to IIL.5 the analysis of equality, either as a special predicate with
the privileged semantics of true equality and the corresponding logical axiom
schemes, or as an ordinary one with the appropriate equality axioms added on
to each system under consideration. It is, however, quite possible to cover the
relevant material in II1.5 up to I11.5.3 and the proofs of the soundness and com-
pleteness theorems for equality interpretations described there immediately after

IL7.

The second exception concerns the proof of Church's theorem on the undecid-
ability of validity for predicate logic. In II1.8 we present a proof designed to apply
even to the fragment of predicate logic represented in PROLOG. In Exercise 3 of
II1.5, however, we indicate how the presentation can easily be modified to make
no mention of PROLOG notation or procedures and so give a proof of Church’s

theorem which is accessible after I1.7.

Finally, the introduction to nonmonotonic logic given in III1.7 up to II1.7.6 can
also be read independently of the material on Logic Programming and PROLOG.
The rest of II1.7 consists of an analysis of the stable models of Logic Program- -
ming with negation in terms of nonmonotonic logic. Other, more self-contained,
applications to graphs and partial orders are given in Exercises 8-9 of IIL.7.

We should point out that there is a considerable overlap in the basic material for
the development of modal and intuitionistic logic in Chapters IV and V. Indeed,
a single unified development is possible albeit at some expense to the ease of
intelligibility. We have instead written these chapters so that either may be read
independently of the other. For the readers who wish to delve into both topics, we
supply a comparative guide to basic notions of classical, modal and intuitionistic

Preface

logic in V.6. We try there to point out the similarities and differences between
these logics.

We have included a variety of problems at the end of almost every section of the
text including a fair number of programming problems in PROLOG that can be
assigned either for theoretical analysis or actual implementation. In particular,
there are series of problems based on a database consisting of the genealogical
lists in the first few chapters of Chronicles. It is reproduced in Appendix B. (An
electronic version is available. Send an email request to shore@math.cornell.edu.)
We have included these problems to serve as paradigms for use with a similar
database or to be appropriately modified to fit other situations. This is not, how-
ever, a text on PROLOG programming. When teaching this material, we always
supplement it with one of the standard texts on PROLOG programming listed
in the suggestions for further reading at the end of Chapter III. Nothing in the
text is tied to a particular version of the PROLOG language; we use only stan-
dard syntax and discuss typical implementations. We have ourselves used various
implementations and platforms. The printouts of program runs are from ARITY
PROLOG running on a PC.

When we (infrequently) cite results from the current literature, we attribute
them as usual. However, as this is a basic textbook, we have made no attempt
to attribute the standard results of the subject to their discoverers, other than
when at times we name theorems according to common usage. We have, however,
supplied a brief history of logic in an appendix that should give the student a feel
for the development of the subject. In addition, suggestions for further reading
that might be useful for either students or teachers using this text are given
at the end of each chapter. Finally, a fairly extensive bibliography of related
material, arranged by subject, is given at the end of the book.

Portions of this book appeared in various formats over many years. Very early
versions of the material on classical logic and set theory appeared in lecture notes
by Nerode which were distributed for courses at Cornell years ago. Part of this
material was also independently reworked by George Metakides and appeared
as lecture notes in English with Nerode and in Greek as his lectures at the Uni-
versity of Patras. Nerode (1990, 4.2] and {1991, 4.4] contain preliminary versions
of our treatment of intuitionistic and modal logic based on the tableau method
which were presented in lectures at Montecatini Terme and Marktoberdorf in
1988 and 1989, respectively. Our approach to resolution was also influenced by
courses on program verification given by Richard Platek at Cornell. More cur-
rent versions of the material have been read and used over the past years by a
number of teachers in both mathematics and computer science departments and
we have benefited considerably from their comments and suggestions. We should
mention Uri Abraham (Mathematics, Ben Gurion University, Israel), John Cross-
ley (Mathematics and Computer Science, Monash University, Australia), Ward
Henson (Mathematics, University of Illinois, Urbana), Nils Klarlund (Computer
Science, University of Aarhus, Denmark), Dexter Kozen (Computer Science, Cor-
nell),George Metakides (University of Patras, Greece and Information Technolo-

vii

viii

Preface

gies Research, EEC) and Jacob Plotkin (Mathematics, Michigan State Univer-
sity). Perry Smith (Math. Reviews) suggested Theorem 1.4.11 of this edition and
its proof. Bakhadyr Khussainov pointed out an error in the previous edition in
the proof of Theorem V.2.20. Warren Goldfarb (Philosophy, Harvard) helped
us avoid a number of pitfalls in the historical appendix. Particularly extensive
(and highly beneficial) comments were received from Wiktor Marek (Computer
Science, University of Kentucky), George Odifreddi (Computer Science, Univer-
sity of Turin, Italy) and Robert Soare (Mathematics and Computer Science,
University of Chicago) who used several versions of the text in their courses.
We also owe a debt to our graduate students who have served as assistants for
our logic courses over the past few years and have made many corrections and
suggestions: Jennifer Davoren, Steven Kautz, James Lipton, Sherry Marcus and
Duminda Wijesekera.

We gratefully acknowledge the financial support over the past few years of the
NSF under grants DMS-8601048, DMS-8902797, DMS-9204308, DMS-9503503;
the ARO under grants DAAG29-85-C-0018 and DAAL03-91-C-0027 through
ACSyAM at the Mathematical Sciences Institute of Cornell University; and IBM
for an equipment grant through Project Ezra at Cornell University. We would
also like to thank Arletta Havlik and Graeme Bailey for their help with the
TEXing of the original version of the text for the previous edition as well as
Geraldine Brady, Jennifer Davoren, Nathaniel Miller, Robert Milnikel, George
Odifreddi and David Solomon for their help in proofreading.

Finally, in appreciation of their continuing support, we dedicate this book to our
wives, Sally and Naomi.

Cornell University Anil Nerode
Ithaca, NY A Richard A. Shore

June 1996

Contents

Preface iii
Introduction 1
I Propositional Logic 7
1 Orders-and Treos : : : : ¢ 75; &0 a00 o BHRIEE BE DOLDAJN - . 7
2 Propositions, Connectives and Truth Tables 12
3 Truth Assignments and Valuations 23
4 Tableau Proofs in Propositional Calculus 27
5 Soundness and Completeness of Tableau Proofs 38
6 Deductions from Premises and Compactness 40
T . An . Axiomatic Approach™00. waiswd bos semesd. . 47
8. ROBOIGbIOn ;i i e e st e e i Euasldn Plabolh 49
9. Refining Resolution : « . suareasabirnn®® hissspoaihasias o 62
10 Linear Resolution, Horn Clauses and PROLOG 66
II Predicate Logic 81
1 Predicates and Quantifiers 81
2 The Language: Terms and Formulas 83
3 Formation Trees, Structuresand Lists 89
4 Semantics: Meaning and Truth BEERE S et s 4y 95
5 Interpretations of PROLOG Programs 100
6 Proofs: Complete Systematic Tableaux 108
7 Soundness and Completeness of Tableau Proofs 120
8: An Axiomatic Approach®,sbigk suitsiecmet 4 . o

Contents

9 Prenex Normal Form and Skolemization
ORI T T T T e e O R SR S
O ABeatIONSES - 2~ T AIND DRI, T RGUPORIT, SRR L
52T he LInRoation AIOPIERME . i i b o e Rt s s
13 Resolution Calrge CAlaGll (S ater Seipnee, U
14 Refining Resolution: Linear Resolution
IIIPROLOG
1 AP RBROIIOR S s o Ll e L e
2 Implementations: Searching and Backtracking
3 Controlling the Implementation: Cut
4 Termination Conditions for PROLOG Programs
8o «Bauelity zvant thioseh. Vioieer Deve 2l Udrnghl L ¥ideaia)0
6 NegationasFailure..............c00. 0.
7 Negation and Nonmonotonic Logic
8 Computability and Undecidability

IV Modal Logic

(=T L B~ - R

Possibility and Necessity; Knowledge or Belief
Frames and Forcing . .o ..oivi v aines JRMOSEGR SUSIRIRRIR A -,
Modal Tableaux Cabpmps N, iR e o SEIINRRT |
Soundness and Completeness
Modal Axioms and Special Accessibility Relations
Ao Kodometic Kpprosel® . . i . v oo i oais oot sodeend g nite

V Intuitionistic Logic

1
2
3
4
5
6

Intuitionism and Constructivism . S e
FEanios an FOROMiE = i - tv iy ok e e el g e
Intuitionietic Tableattxo o e 1000 ba - anniiatararic]
Soundness and Completeness v v v v v v v e
Decidability and Undecidability0
A Compearative Guide.+ + + . S2800A DNBmDIXA OA,

159
159
166
178
182
188
192
203
211

221
221
224
228
239
249
259

Contents

V1 Elements of Set Theory

1 Some Basic Axioms of Set Theory
Booles Algebra of 86l i owven wv S s e e
Relations, Functions and the Power Set Axiom
‘The Natural Numbers, Arithmetic and Infinity
Replacement, Choice and Foundation.
Zermelo-Fraenkel Set Theory in Predicate Logic
Cardinality: Finite and Countable
OrdinaliNambers 165 L o i i e i e e e i S
Ordinal Arithmetic and Transfinite Induction
Transfinite Recursion, Choice and the Ranked Universe
11 Cardinals and Cardinal Arithmetic

O 00 94 & e W N

—
o

Appendik A: An Historical Overview
1 Caleulusis piir e san aud Sodbasfpsiile sallior pewr jopiaal s

Nineteenth Century Logic
Nineteenth Century Foundations of Mathematics
Twentieth Century Foundations of Mathematics
Early Twentieth Century Logic
Deduction and Computation
Recent Automation of Logic and PROLOG
i g aaese bl er v e s (S Seaditouyieersi T

O 00 ~J OO v b W N

—
o

Appefndix B: A Genealogical Database
Bibliography
Index of Symbols

Index of Terms

xi

315
315
318
321
328
339
345
348
354
360
364

368

375
375
376
379
380
383
387
389
392
395
395

399
409
439

443

Introduction

In 1920 logic was mostly a philosopher’s garden. There were also a few mathe-
maticians there, cultivating the logical roots of the mathematical tree. Today, Re-
cursion Theory, Set Theory, Model Theory and Proof Theory, logic’s major sub-
disciplines, have become full-fledged branches of mathematics. Since the 1970s,
the winds of change have been blowing new seeds into the logic garden from
computer science, Al and linguistics. These winds have also uncovered a new to-
pography with many prominences and depths, fertile soil for new logical subjects.
These days, if you survey international meetings in computer science and linguis-
tics, you will find that the language of mathematical logic is a lingua franca, that
methods of mathematical logic are ubiquitous and that understanding new log-
ics and finding feasible algorithms for implementing their inference procedures
play a central role in many disciplines. The emerging areas with an important
logic component include imperative, declarative and functional programming;
verification of programs; interactive, concurrent, distributed, fault tolerant and
real time computing; knowledge-based systems; deductive databases; and vLsI
design. Various types of logic are now also playing key roles in the modeling of
reasoning in special fields from law to medicine.

These applications have widened the horizons of logical research to encompass
problems and ideas that were not even considered when logic was motivated
only by questions from mathematics and philosophy. Applied logic is now as
much a reality as is applied mathematics, with a similarly broad, overlapping
but somewhat different area of application. This situation has arisen because of
the needs for automated inference in critical, real time and large database in-
formation processing applications throughout business, government, science and
technology. Mathematical logic, coupled with some of its applications, should be
as easily available to college and university students as is applied mathematics. It
may well be as important to the future of many previously qualitative disciplines
as ordinary applied mathematics has been to the traditionally quantitative ones.

This book is a rigorous elementary introduction to classical predicate logic em-
phasizing that deduction is a form of computation. We cover the standard topics
of soundness, completeness and compactness: our proof methods produce only

2

Introduction

valid results, all valid sentences are provable and, if a fact is a logical conse-
quence of an infinite set of axioms, it is actually a consequence of finitely many
of them. The need for soundness seems obvious but, as we see in our discussion
of PROLOG, even this requirement of simple correctness is often sacrificed on the
altar of efficiency in actual implementations. Completeness, on the other hand,
is a remarkable result connecting proofs and validity. We can prescribe an effec-
tive proof procedure that precisely captures the semantics of first order logic. A
valid sentence, i.e., one true for every interpretation of the relations used to state
it, always has a proof in a particular formal system and there is an algorithm
to find such a proof. Compactness also has surprising applications that deduce
results about infinite structures from results about finite ones. To cite just one
example, it implies that every planar map is colorable with four colors as every
finite planar map is so colorable. We also prove that validity is undecidable: no
single algorithm can decide if any given sentence is valid. Thus, although we
can, using a particular algorithm, search for a proof of a given sentence ¢ and
be assured of finding one if @ is valid, we cannot know in general whether we are

searching in vain.

Our treatment begins in Chapter I with the syntax and semantics of classical
propositional logic, that is, the logic of compound sentences formed with con-
nectives such as “and”, “or”, “if” and “not” but without consideration of the
quantifiers “for all” and “there exists”. We present a traditional approach to syn-
tax in terms of strings of symbols as well as one based on tree structures. As trees
have become basic objects in many computer science areas, the latter approach
may well be more accessible (or at least familiar) to many students. Either ap-
proach can be adopted. We then introduce the semantic tableau proof method
developed by Beth (Foundations of Mathematics (1959, 3.2]) and Smullyan (First
Onrder Logic [1968, 3.2]) for propositional logic. We have found over the years that
the tableaux method is the easiest for students to learn, use and remember. This
method seeks to find a proof of a sentence ¢ by discovering that a systematic
search for a counterexample to ¢ fails in a finite amount of time. The procedure
brings out the unadorned reasons for completeness by directly analyzing the sub-
formulas of the formula ¢ for which a proof is being attempted. It presents the
systematic search as a tree-constructing algorithm. The goal of the algorithm is
to produce a finite tree beginning with “y is false” with a contradiction on every
branch. Such a tree shows that every analysis of “y is false” leads to a contradic-
tion. We call this a tableau proof of ¢. Employing a systematic search for tableau
proofs, we prove the soundness, completeness and compactness theorems.

We then develop the resolution method of theorem proving due to J. A. Robinson
[1965, 5.7]. This method has played a crucial role in the development of auto-
mated reasoning and theorem proving. After again establishing soundness and
completeness, we specialize this method to Horn clauses to develop the math-
ematical foundations of Logic Programming and PROLOG (still at the proposi-
tional level). Logic Programming is a general abstract approach to programming
as logical deduction in a restricted setting. PROLOG is a type of programming

Introduction

language designed to implement the idea that computations are deductions.

In Chapter II we introduce the rest of predicate logic (functions and relations;
variables and quantifiers) with explanations of its syntax and semantics. We
present a tableau style proof system for predicate logic and prove its soundness
_and completeness. Our approach naturally leads to Herbrand’s theorem which,
in a certain sense, reduces predicate logic to propositional logic. Then, following
Robinson, we add to resolution the pattern—matching algorithm, called unifica-
tion, which is originally due to Herbrand. This produces Robinson’s system of
deduction for predicate logic; it was the first complete redesign of logical in-
ference for the purpose of mechanization of inference on digital computers. It
is really better carried out by machines than by hand. Robinson’s work made
automation of reasoning on digital computers a major area of research. Many of
his ideas and much of his terminology have persisted to the present day.

Chapter I1I is devoted to the specialization of resolution to Horn clauses, a spe-
cial class of predicate logic formulas that are the domain of Logic Programming
and PROLOG. The predicate version of Logic Programming has applications to
expert systems, intelligent databases and Al among many others. Logic Pro-
gramming has a very active research community and has become a separate
discipline. In addition to restricting its attention to a limited class of formulas,
Logic Programming and PROLOG make various changes in proof procedures to
attain computational efficiency. We cover the mathematical foundations of Horn
clause logic and then of PROLOG: syntax, semantics, soundness and completeness.
We also touch on proofs of termination for PROLOG programs. As an example of
current trends, we give an introductory account of the so—called “general logic
programs”. We present views of implementation and semantics for negation in
this setting in terms of both negation as failure and stable models. This area
is still in considerable flux. It is one example of the larger evolving subject of
nonmonotonic reasoning. Unlike the classical situation, in nonmonotonic logic
the addition of new premises may force the withdrawal of conclusions deduced
from the previous ones. We include a brief introduction to this area in IIL.7.
We are not programmers, however, and do not attempt to really cover PROLOG
programming beyond what is needed to illustrate the underlying logical and
mathematical ideas. (References to basic books.on PROLOG programming are in-
cluded in the bibliography.) We do, however, deal with theoretical computability
by PROLOG programs as our route to undecidability.

Standard proofs of undecidability for a theory come down to showing how to
represent each effectively computable function by a logical formula so that com-
puting the values of the function amounts to deducing instances of that formula.
The noncomputability of specific functions such as the halting problem (deciding
if a given program halts on a given input) are then translated into the impos-
sibility of deciding the provability of given formulas. In this way, we prove the
undecidability of PROLOG and of Horn clause logic (and so a fortiori of all of
predicate logic) by showing that Horn clause programs and even standard im-
plementations of PROLOG compute all effectively computable functions. As a

3

.

Introduction

definition of an algorithm for an effective computation, we use the model of
computation given by programs on register machines. Thus, we simulate each
register machine program for computing a recursive function by a PROLOG pro-
gram computing a coded version of that same function. As it is known that all
other models of computation can be simulated by register machines, this suffices
to get the desired results on computability and undecidability.

In Chapters IV and V we turn to some nonclassical logics which are becoming
increasingly important in understanding and modeling computation and in veri-
fying programs. “Nonclassical” has a technical meaning: the truth of a composite
sentence may not depend solely on the truth of its parts and, indeed, even the
truth of simple statements may depend on context, time, beliefs, etc. Although
this attitude is not the traditional one in mathematics, it reflects many real life
situations as well as many important problems in computer science. The truth of
an implication often has temporal components. Usually, sentences are evaluated
within some context. If our knowledge or beliefs change, so may our evaluation
of the truth of some sentence. The analysis of programs depends on the states
of knowledge of the computer over time, on what may happen and on what
must happen. We touch briefly on one form of such logic (nonmonotonic logic in
which later information may invalidate earlier conclusions) in Chapter III. The
last two chapters are devoted to a systematic study of two such logics: modal
and intuitionistic.

Intuitionism incorporates a constructive view of mathematics into the underlying
logic. We can claim that we have a proof of A or B only if we have a proof of
one of them. We can claim to have a proof of “there exists an r with property
P" only if we can actually exhibit an object ¢ and a proof that ¢ has property
P. Modal logic attempts to capture notions of necessity and possibility to serve
as a basis for the analyses of systems with temporal, dynamic or belief-based
components. We describe the semantics of both of these logics in terms of Kripke
frames. These are sets of classical models together with a partial ordering or some
other relation on the models; it is this relation that embodies the nonclassical
aspects of Kripke semantics. We then formulate tableau systems that generalize
the classical ones and faithfully reflect the semantics expressed by Kripke frames.
Once again, soundness and completeness play a central role in our exposition.
The two logics are presented independently but a comparative guide is supplied

in V.6.

For good or ill, the philosophical tenets of intuitionism play no role here nor
do the philosophers’ analyses of time and necessity. Rather, we explain Kripke
frames as a way of modeling the notion of a consequence of partial information
and modal operators as simply expressing relations among sets of models. This
explanation fits the prospective use of intuitionistic logic, as Scott has suggested,
as a language for Scott domains and information systems, or for Horn clause logic
which is a subtler use of both classical and intuitionistic logic. It also fits the
applications of modal logic to program analysis and verification, as initiated by

Introduction 5

Hoare with dynamic logic and continued by many in the field.

We have included in this edition a new chapter (Chapter VI) on the elements of
set theory. This material can be used as a reference for standard set-theoretic
notations and concepts such as functions, relations, orderings, sequences and the
like. It is, however, also a self-contained introduction to axiomatic set theory. In
§1-6 of this chapter, we present the axioms for set theory and develop enough of
elementary set theory to formalize basic number theory including, for example,
the uniqueness of the natural numbers up to isomorphism as a structure satisfy-
ing Peano’s famous axioms for successor as well as the existence and uniqueness
of functions defined by induction or recursion on the natural numbers. We also
present the set basic theoretic notions such as functions, sequences, orders and
cardinality up to the countable sets needed in this book. In the rest of the chapter,
we establish the principle of transfinite induction and develop the basic theory
of ordinals, cardinals (including the uncountable ones and their arithmetic) and
some of the usual variants of the axiom of choice. Together, this material should
supply a sufficient background in set theory for almost any graduate course of
studies in computer science or mathematics. The exposition is independent of
the rest of the book and repeats a small amount of material from I.1 and the
historical appendix.

Finally, we believe that knowing the historical context in which mathematical
logic and its applications have developed is important for a full understanding
and appreciation of the subject. Thus, we supply in an appendix a brief historical
view of the origins and development of logic from the Greeks to the middle of the
twentieth century. Parts of this survey may be fully appreciated only after read-
ing the text (especially the first two chapters) but it can be profitably consulted
before, after or while reading the book. It is intended only as a tourist brochure,
a guide to the terrain. To supplement this guide, we have included a fairly exten-
sive bibliography of historical references and sources for additional information
on many topics in logic, including several not covered in the text. When possible,
we have confined our suggestions to historical material, handbooks, surveys and
basic texts at a level suitable for a reader who has finished this book. Some newer
subjects, however, also require references to the current literature. This bibliog-
raphy is arranged as several (partially annotated) bibliographies on individual
subjects. References are made accordingly. Thus, for example, Thomas [1939,
1.1] refers to the item Selections Illustrating the History of Greek Mathematics
with an English Translation by Ivor Thomas published in 1939 which is listed
in Bibliography 1.1, Sourcebooks for the History of Mathematics. We have also
included at the end of each chapter suggestions for further reading which are
keyed to these bibliographies. /

