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Preface

This volume is the record of an instructional conference on number theory
and arithmetic geometry held from August 9 through 18, 1995 at Boston
University. It contains expanded versions of all of the major lectures given
during the conference. We want to thank all of the speakers, all of the
writers whose contributions make up this volume, and all of the “behind-
the-scenes” folks whose assistance was indispensable in running the con-
ference. We would especially like to express our appreciation to Patricia
Pacelli, who coordinated most of the details of the conference while in
the midst of writing her PhD thesis, to Jaap Top and Jerry Tunnell, who
stepped into the breach on short notice when two of the invited speakers
were unavoidably unable to attend, and to Stephen Gelbart, whose courage
and enthusiasm in the face of adversity has been an inspiration to us.

Finally, the conference was only made possible through the generous
support of Boston University, the Vaughn Foundation, the National Secu-
rity Agency and the National Science Foundation. In particular, their gen-
erosity allowed us to invite a multitude of young mathematicians, making
the BU conference one of the largest and liveliest number theory confer-
ences ever held.

January 13, 1997 G. Cornell

J.H. Silverman
G. Stevens
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Introduction

The chapters of this book are expanded versions of the lectures given at
the BU conference. They are intended to introduce the many ideas and
techniques used by Wiles in his proof that every (semi-stable) elliptic curve
over Q is modular, and to explain how Wiles’ result combined with Ribet’s
theorem implies the validity of Fermat’s Last Theorem.

The first chapter contains an overview of the complete proof, and it
is followed by introductory chapters surveying the basic theory of elliptic
curves (Chapter II), modular functions and curves (Chapter III), Galois
cohomology (Chapter IV), and finite group schemes (Chapter V). Next we
turn to the representation theory which lies at the core of Wiles’ proof.
Chapter VI gives an introduction to automorphic representations and the
Langlands-Tunnell theorem, which provides the crucial first step that a cer-
tain mod 3 representation is modular. Chapter VII describes Serre’s conjec-
tures and the known cases which give the link between modularity of elliptic
curves and Fermat’s Last Theorem. After this come chapters on deforma-
tions of Galois representations (Chapter VIII) and universal deformation
rings (Chapter IX), followed by chapters on Hecke algebras (Chapter X)
and complete intersections (Chapter XI). Chapters XII and XIV contain
the heart of Wiles’ proof, with a brief interlude (Chapter XIII) devoted to
representability of the flat deformation functor. The final step in Wiles’
proof, the so-called “3-5 shift,” is discussed in Chapters XV and XVI, and
Diamond’s relaxation of the semi-stability condition is described in Chap-
ter XVII. The volume concludes by looking both backward and forward in
time, with two chapters (Chapters XVIII and XIX) describing some of the
“pre-modular” history of Fermat’s Last Theorem, and two chapters (Chap-
ters XX and XXI) placing Wiles’ theorem into a more general Diophantine
context and giving some ideas of possible future applications.

As the preceding brief summary will have made clear, the proof of
Wiles’ theorem is extremely intricate and draws on tools from many areas of
mathematics. The editors hope that this volume will help everyone, student
and professional mathematician alike, who wants to study the details of

what is surely one of the most memorable mathematical achievements of
this century.
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