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PREFACE

Unlike Newton’s mechanics, or Maxwell’s electrodynamics, or Einstein’s relativity,
quantum theory was not created—or even definitively packaged—by one individ-
ual, and it retains to this day some of the scars of its exhilarating but traumatic
youth. There is no general consensus as to what its fundamental principles are, how
it should be taught, or what it really “means.” Every competent physicist can “do”
quantum mechanics, but the stories we tell ourselves about what we are doing are
as various as the tales of Scheherazade, and almost as implausible. Niels Bohr said,
“If you are not confused by quantum physics then you haven’t really understood
it”; Richard Feynman remarked, “I think I can safely say that nobody understands
quantum mechanics.”

The purpose of this book is to teach you how to do quantum mechanics. Apart
from some essential background in Chapter 1, the deeper quasi-philosophical ques-
tions are saved for the end. I do not believe one can intelligently discuss what
quantum mechanics means until one has a firm sense of what quantum mechan-
ics does. But if you absolutely cannot wait, by all means read the Afterword
immediately following Chapter 1.

Not only is quantum theory conceptually rich, it is also technically difficult,
and exact solutions to all but the most artificial textbook examples are few and far
between. It is therefore essential to develop special techniques for attacking more
realistic problems. Accordingly, this book is divided into two parts;' Part I covers
the basic theory, and Part II assembles an arsenal of approximation schemes, with
illustrative applications. Although it is important to keep the two parts logically
separate, it is not necessary to study the material in the order presented here. Some

I This structure was inspired by David Park’s classic text, Introduction to the Quantum Theory,
3rd ed., McGraw-Hill, New York (1992).
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Preface

instructors, for example, may wish to treat time-independent perturbation theory
immediately after Chapter 2.

This book is intended for a one-semester or one-year course at the junior or
senior level. A one-semester course will have to concentrate mainly on Part I;
a full-year course should have room for supplementary material beyond Part II.
The reader must be familiar with the rudiments of linear algebra (as summarized
in the Appendix), complex numbers, and calculus up through partial derivatives;
some acquaintance with Fourier analysis and the Dirac delta function would help.
Elementary classical mechanics is essential, of course, and a little electrodynamics
would be useful in places. As always, the more physics and math you know the
easier it will be, and the more you will get out of your study. But I would like
to emphasize that quantum mechanics is not, in my view, something that flows
smoothly and naturally from earlier theories. On the contrary, it represents an
abrupt and revolutionary departure from classical ideas, calling forth a wholly new
and radically counterintuitive way of thinking about the world. That, indeed, is
what makes it such a fascinating subject.

At first glance, this book may strike you as forbiddingly mathematical. We
encounter Legendre, Hermite, and Laguerre polynomials, spherical harmonics,
Bessel, Neumann, and Hankel functions, Airy functions, and even the Riemann
zeta function—not to mention Fourier transforms, Hilbert spaces, hermitian oper-
ators, Clebsch-Gordan coefficients, and Lagrange multipliers. Is all this baggage
really necessary? Perhaps not, but physics is like carpentry: Using the right tool
makes the job easier, not more difficult, and teaching quantum mechanics without
the appropriate mathematical equipment is like asking the student to dig a foun-
dation with a screwdriver. (On the other hand, it can be tedious and diverting if
the instructor feels obliged to give elaborate lessons on the proper use of each
tool. My own instinct is to hand the students shovels and tell them to start dig-
ging. They may develop blisters at first, but I still think this is the most efficient
and exciting way to learn.) At any rate, I can assure you that there is no deep
mathematics in this book, and if you run into something unfamiliar, and you don’t
find my explanation adequate, by all means ask someone about it, or look it up.
There are many good books on mathematical methods—1 particularly recommend
Mary Boas, Mathematical Methods in the Physical Sciences, 2nd ed., Wiley, New
York (1983), or George Arfken and Hans-Jurgen Weber, Mathematical Methods for
Physicists, 5th ed., Academic Press, Orlando (2000). But whatever you do, don’t
let the mathematics— which, for us, is only a rool —interfere with the physics.

Several readers have noted that there are fewer worked examples in this book
than is customary, and that some important material is relegated to the problems.
This is no accident. I don’t believe you can learn quantum mechanics without doing
many exercises for yourself. Instructors should of course go over as many problems
in class as time allows, but students should be warned that this is not a subject
about which anyone has natural intuitions—you’re developing a whole new set
of muscles here, and there is simply no substitute for calisthenics. Mark Semon
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suggested that I offer a “Michelin Guide” to the problems, with varying numbers
of stars to indicate the level of difficulty and importance. This seemed like a good
idea (though, like the quality of a restaurant, the significance of a problem is partly
a matter of taste); I have adopted the following rating scheme:

* an essential problem that every reader should study;
*% a somewhat more difficult or more peripheral problem;
* % an unusually challenging problem, that may take over an hour.

(No stars at all means fast food: OK if you're hungry, but not very nourishing.)
Most of the one-star problems appear at the end of the relevant section; most of
the three-star problems are at the end of the chapter. A solution manual is available
(to instructors only) from the publisher.

In preparing the second edition I have tried to retain as much as possible the
spirit of the first. The only wholesale change is Chapter 3, which was much too
long and diverting; it has been completely rewritten, with the background material
on finite-dimensional vector spaces (a subject with which most students at this level
are already comfortable) relegated to the Appendix. I have added some examples
in Chapter 2 (and fixed the awkward definition of raising and lowering operators
for the harmonic oscillator). In later chapters I have made as few changes as 1
could, even preserving the numbering of problems and equations, where possible.
The treatment is streamlined in places (a better introduction to angular momentum
in Chapter 4, for instance, a simpler proof of the adiabatic theorem in Chapter
10, and a new section on partial wave phase shifts in Chapter 11). Inevitably, the
second edition is a bit longer than the first, which I regret, but I hope it is cleaner
and more accessible.

I have benefited from the comments and advice of many colleagues, who
read the original manuscript, pointed out weaknesses (or errors) in the first edition,
suggested improvements in the presentation, and supplied interesting problems. I
would like to thank in particular P. K. Aravind (Worcester Polytech), Greg Benesh
(Baylor), David Boness (Seattle), Burt Brody (Bard), Ash Carter (Drew), Edward
Chang (Massachusetts), Peter Collings (Swarthmore), Richard Crandall (Reed),
Jeff Dunham (Middlebury), Greg Elliott (Puget Sound), John Essick (Reed), Gregg
Franklin (Carnegie Mellon), Henry Greenside (Duke), Paul Haines (Dartmouth),
J. R. Huddle (Navy), Larry Hunter (Amberst), David Kaplan (Washington), Alex
Kuzmich (Georgia Tech), Peter Leung (Portland State), Tony Liss (Illinois), Jeffry
Mallow (Chicago Loyola), James McTavish (Liverpool), James Nearing (Miami),
Johnny Powell (Reed), Krishna Rajagopal (MIT), Brian Raue (Florida Interna-
tional), Robert Reynolds (Reed), Keith Riles (Michigan), Mark Semon (Bates),
Herschel Snodgrass (Lewis and Clark), John Taylor (Colorado), Stavros Theodor-
akis (Cyprus), A.S. Tremsin (Berkeley), Dan Velleman (Ambherst), Nicholas
Wheeler (Reed), Scott Willenbrock (Illinois), William Wootters (Williams), Sam
Wurzel (Brown), and Jens Zorn (Michigan).



CONTENTS

vi

FF
PREFACE

PART I THEORY

1 THE WAVE FUNCTION 1
1.1  The Schrodinger Equation 1
1.2 The Statistical Interpretation 2
1.3 Probability 5
1.4  Normalization 12
1.5 Momentum 15
1.6 The Uncertainty Principle 18

2 TIME-INDEPENDENT SCHRODINGER EQUATION 24
2.1  Stationary States 24
2.2 The Infinite Square Well 30
2.3 The Harmornic Oscillator 40
2.4  The Free Particle 59
2.5  The Delta-Function Potential 68
2.6 The Finite Square Well 78

3 FORMALISM 93
3.1  Hilbert Space 93
3.2 Observables 96
3.3 Eigenfunctions of a Hermitian Operator 100



Contents

3.4  Generalized Statistical Interpretation 106
3.5 The Uncertainty Principle 110
3.6  Dirac Notation 118

4 QUANTUM MECHANICS IN THREE DIMENSIONS 131
4.1  Schrodinger Equation in Spherical Coordinates 131
4.2  The Hydrogen Atom 145
4.3  Angular Momentum 160
44  Spin 171

5 IDENTICAL PARTICLES 201
5.1  Two-Particle Systems 201
5.2  Atoms 210
5.3  Solids 218
5.4  Quantum Statistical Mechanics 230

PART II APPLICATIONS

6 TIME-INDEPENDENT PERTURBATION THEORY 249
6.1  Nondegenerate Perturbation Theory 249
6.2  Degenerate Perturbation Theory 257
6.3  The Fine Structure of Hydrogen 266
6.4  The Zeeman Effect 277
6.5 Hyperfine Splitting 283

7 THE VARIATIONAL PRINCIPLE 293
7.1  Theory 293
7.2 The Ground State of Helium 299
7.3  The Hydrogen Molecule Ion 304

8 THE WKB APPROXIMATION 315
8.1  The “Classical” Region 316
8.2  Tunneling 320
8.3  The Connection Formulas 325

9 TIME-DEPENDENT PERTURBATION THEORY 340
9.1 Two-Level Systems 341
9.2  Emission and Absorption of Radiation 348
9.3  Spontaneous Emission 355

10 THE ADIABATIC APPROXIMATION 368
10.1 The Adiabatic Theorem 368
10.2 Berry's Phase 376



viil Contents

11 SCATTERING 394
11.1 Introduction 394
11.2 Partial Wave Analysis 399
11.3 Phase Shifts 405
11.4 The Born Approximation 408

INDEX 420
RV E RIER



CHAPTER 1

PARTI THEORY

THE WAVE FUNCTION

1.1 THE SCHRODINGER EQUATION

Imagine a particle of mass m, constrained to move along the x-axis, subject to
some specified force F(x.t) (Figure 1.1). The program of classical mechanics
is to determine the position of the particle at any given time: x(r). Once we
know that, we can figure out the velocity (v = dx/dt), the momentum (p =
mv), the kinetic energy (T = (1/2)mv?), or any other dynamical variable of
interest. And how do we go about determining x(1)? We apply Newton’s sec-
ond Taw: F = ma. (For conservative systems—the only kind we shall con-
sider, and, fortunately, the only kind that occur at the microscopic level—the
force can be expressed as the icjix@g of a potential energy function,! F =
—3V/dx, and Newton’s law reads m d%x/dt®> = —3V/dx.) This, together with
appropriate initial conditions (typically the position and velocity at r = 0), deter-
mines x (7).

Quantum mechanics approaches this same problem quite differently. In this
case what we're looking for is the particle’s wave function, W (x, 1), and we get
it by solving the Schrodinger equation:

v h? 32w
LA

=————+ V¥, .
ar 2m 9x2 + (11]

I Magnetic forces are an exception, but let's not worry about them just yet. By the way, we shall
assume throughout this book that the motion is nonrelativistic (v < c).
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The Wave Function

ﬁ —> F(x.t)

FIGURE 1.1: A “particle” constrained to move in one dimension under the influence
of a specified force.

Here i is the square root of —1, and /4 is Planck’s constant—or rather, his original
constant (h) divided by 2rm:

/
h=—— =1.054572 x 10~] s. [1.2]
27

The Schrodinger equation plays a role logically analogous to Newton’s second
law: Given suitable initial conditions (typically, W(x, 0)), the Schrédinger equation
determines W(x,t) for all future time, just as, in classical mechanics, Newton's
law determines x(z) for all future time.>

1.2 THE STATISTICAL INTERPRETATION

But what exactly is this “wave function,” and what does it do for you once you've
gor it? Afier all, a particle, by its nature, is localized at a point, whereas the wave
function (as its name suggests) is spread out in space (it’s a function of x, for any
given time t). How can such an object represent the state of a particle? The answer
is provided by Born’s statistical interpretation of the wave function, which says
that |W (x, 1)|* gives the probability of finding the particle at point x, at time r—or,
more precisely,’

b aie . .
2, _ | probability of finding the particle
/a W, D dx = [ between a and b. at time 7. [1.3]

Probability is the area under the graph of |W|?. For the wave function in Figure 1.2,
you would be quite likely to find the particle in the vicinity of point A, where |2
is large, and relatively unlikely to find it near point B,

2For a delightful first-hand account of the origins of the Schrodinger equation see the article by
Felix Bloch in Physics Today, December 1976.

3The wave function itself is complex, but (W] = U*W (where W™ is the complex conjugate of
W) is real and nonnegative—as a probability, of course. must be.
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FIGURE 1.2: A typical wave function. The shaded area represents the probability of
finding the particle between a and b. The particle would be relatively likely to be found
near A, and unlikely to be found near B.

The statistical interpretation introduces a kind of indeterminacy into quan-
tum mechanics, for even if you know everything the theory has to tell you about
the particle (to wit: its wave function), still you cannot predict with certainty the
outtmme of a simple experiment t0 measure its position—all quantum mechan-
ic has to offer is statistical information about the possible results. This inde-
terminacy has been profoundly disturbing to physicists and philosophers alike,
and it is natural to wonder whether it is a fact of nature, or a defect in the
theory.

Suppose I do measure the position of the particle, and I find it to be at point
C.* Question: Where was the particle just before I made the measurement? There
are three plausible answers to this question, and they serve to characterize the main
schools of thought regarding quantum indeterminacy:

1. The realist position: The particle was at C. This certainly seems like a sen-
sible response, and it is the one Einstein advocated. Note, however, that if this is
true then quantum mechanics is an incomplete theory, since the particle really was
at C, and yet quantum mechanics was unable to tell us so. To the realist, indeter-
minacy is not a fact of nature, but a reflection of our ignorance. As d’Espagnat put
it, “the position of the particle was never indeterminate, but was merely unknown
to the experimenter.”> Evidently W is not the whole story—some additional infor-
mation (known as a hidden variable) is needed to provide a complete description
of the particle.

2. Fhe ort position: The particle wasn't really anywhere. It was the act
of nMurement that forced the particle to “‘take a stand” (though how and why it
decided on the point C we dare not ask). Jordan said it most starkly: “Observations
not only disturb what is to be measured, they produce it ... We compel (the

#0Of course, no measuring instrument is perfectly precise? what I mean is that the particle was
found in the vicinity of C, to within the tolerance of the equipment.

SBernard d’Espagnat, “The Quantum Theory and Reality™ (Scientific American. November 1979,
p. 165).
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The Wave Function

particle) to assume a definite position.”® This view (the so-called Copenhagen
interpretation), is associated with Bohr and his followers. Among physicists it
has always been the most widely accepted position. Note, however, that if it is
correct there is something very peculiar about the act of measurement— something
that over half a century of debate has done precious little t@

3. The agnostic position: Refuse to answer. This is not quite as silly as it
sounds—after all, what sense can there be in making assertions about the status
of a particle before a measurement, when the only way of knowing whether you
were right is precisely to conduct a measurement, in which case what you get is no
longer “before the measurement?” It is metaphysics (in the pejorative sense of the
word) to worry about something that cannot, by its nature, be tested. Pauli said:
“One should no more rack one’s brain about the problem of whether something one
cannot know anything about exists all the same, than about the ancient question of
how many angels are able to sit on the point of a needle.”” For decades this was the
“fall-back’ position of most physicists: They'd try to sell you the orthodox answer,
but if you were persistent they’d retreat to the agnostic response, and terminate the
conversation.

Until fairly recemly, all three positions (realist, orthodox and agnoetic) had
that it r'nakuég an observable difference whether the particle had a éremse J(though
unknown) position prior to the measurement, or not. Bell’s discovery effectively
eliminated agnosticism as a viable option, and made it an experimental question
whether 1 or 2is the correct choice. I'll return to this story at the end of the book,
when you will be in a better position to appreciate Bell's argument; for now, suffice
it to say that the experiments have decisively confirmed the orthodox interpreta-

tion:® A particle simply does not have a precise position prior to measurement, any

more than the ripples on a pond do; it is the measurement process that insists on
one particutar TImIber, and thereby in a sense creates the specific result, fimited
onmnmamﬁﬁm’

What if I made a second measurement, immediately after the first? Would I
get C again, or does the act of measurement cough up some completely new num-
ber each time? On this question everyone is in agreement: A repeated measurement
(on the same particle) must return the same value. Indeed, it would be tough to

prove that the particle was really found at C in the first instance, if this could not
be confirmed by immediate repetition of the measurement. How does the orthodox

5Quoted in a lovely article by N. David Mermin, “Is the moon there when nobody looks?”
(Physics Today, April 1985, p. 38).

7Quoted by Mermin (footnote 6), p. 40.

8 This statement is a little too strong: There remain a few theoretical and experimental loopholes,
some of which I shall discuss in the Afterword. There exist viable nonlocal hidden variable theories
(notably David Bohm’s), and other formulations (such as the many worlds interpretation) that do not
fit cleanly into any of my three categories. But I think it is wise, at least from a pedagogical point of
view, to adopt a clear and coherent platform at this stage, and worry about the alternatives later.



