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Preface to the English Edition

This English edition could serve as a text for a first year graduate course on
differential geometry, as did for a long time the Chicago Notes of Chern
mentioned in the Preface to the German Edition. Suitable references for ordin-
ary differential equations are Hurewicz, W. Lectures on ordinary differential
equations. MIT Press, Cambridge, Mass., 1958, and for the topology of
surfaces: Massey, Algebraic Topology, Springer-Verlag, New York, 1977.

Upon David Hoffman fell the difficult task of transforming the tightly
constructed German text into one which would mesh well with the more
relaxed format of the Graduate Texts in Mathematics series. There are some
elaborations and several new figures have been added. I trust that the merits
of the German edition have survived whereas at the same time the efforts of
David helped to elucidate the general conception of the Course where we
tried to put Geometry before Formalism without giving up mathematical
rigour.

I wish to thank David for his work and his enthusiasm during the whole
period of our collaboration. At the same time I would like to commend the
editors of Springer-Verlag for their patience and good advice.

Bonn

June, 1977 Wilhelm Klingenberg



From the Preface to the German Edition

This book has its origins in a one-semester course in differential geometry
which I have given many times at Gottingen, Mainz, and Bonn.

It is my intention that these lectures should offer an introduction to the
classical differential geometry of curves and surfaces, suitable for students
in their middle semester who have mastered the introductory courses. A
course such as this would be an alternative to other middle semester courses
such as complex function theory, abstract algebra, or algebraic topology.

For the most part, these lectures assume nothing more than a knowledge
of basic analysis, real linear algebra, and euclidean geometry. It is only in
the last chapters that a familiarity with the topology of compact surfaces
would be useful. Nothing is used that cannot be found in Seifert and Threlfall’s
classic textbook of topology.

For a summary of the contents of these lectures, I refer the reader to the
table of contents. Of course it was necessary to make a selection from the
profusion of material that could be presented at this level. For me it was clear
that the preferred topics were precisely those which contributed to an under-
standing of two-dimensional Riemannian geometry. Nonetheless, I think that
my lectures provide a useful basis for the understanding of all the areas of
differential geometry.

The structure of these lectures, including the organization of some of the
proofs, has been greatly influenced by S. S. Chern’s lecture notes entitled
“ Differential Geometry,” published in Chicago in 1954. Chern, in turn, was
influenced by W. Blaschke’s ““Vorlesungen iiber Differentialgeometrie.”
Chern had studied with Blaschke in Hamburg between 1934 and 1936, and,
nearly twenty years later, it was Blaschke who gave me strong support in my
career as a differential geometer.

So as I take the privilege of dedicating this book to Shiing-shen Chern, I
would at the same time desire to honor the memory of W. Blaschke.

Bonn-Rétigen Wilhelm Klingenberg
January 1, 1972
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Calculus in Euclidean Space

We will start with a brief outline of the essential facts about R" and the vector
calculus.! The reader familiar with this subject may wish to begin with
Chapter 1, using this chapter as the need arises.

0.1 Euclidean Space

As usual, R" is the vector space of all real n-tuples x = (x,..., x"). The
scalar product of two elements x, y in R™ is given by the formula
x-yi= Z xyi.
i

We will write x-x = x2 and V'x? = |x|. The real number |x| is called the
length or the norm of x. The Schwarz inequality,

Gy < |xPlyl% |x]? = X2,
is satisfied by the scalar product and from it is derived the triangle inequality:
|x +y| < |x| +|y| forallx,yeR"

The distinguished basis of R™ will be denoted by (¢;), 1 < i < n. The vector
e, is the n-tuple with 1 in the ith place and 0 in all the other places.

We shall also use R" to denote the n-dimensional Euclidean space. More
precisely, R" is the Euclidean space with origin = (0,0,...,0), and an
orthonormal basis at this point, namely (¢), 1 < i < n.

1 Some standard references for material in this chapter are: Dieudonné, J. Foundations
of Modern Analysis. New York: Academic Press, 1960. Edwards, C. H. Advanced
Calculus of Several Variables. New York: Academic Press, 1973. Spivak, M. Calculus on
Manifolds. Reading, Mass.: W. Benjamin, 1966.



0 Calculus in Euclidean Space

The distance between two points x, y € R* will be denoted by d(x, y) and
defined by d(x, y) := |x — y|. Clearly d(x, y) > 0, (d(x, ) = 0 if and only
if x = y) and d(x, y) = d(y, x). Also, the triangle inequality for the norm
implies the triangle inequality for the distance function,

dix,z) <d(x,y) + d(y,2), x,y,zeR"

These three conditions satisfied by d imply that R", with d as distance function,
is a metric space.

The transformations of Euclidean space which preserve the Euclidean
structure, i.e., the metric preserving transformations of R", are called
isometries. One type of isometry is a translation: T, : R — R" defined by
x> Xx + X,, Where.x, is a fixed element of R". Another type is an orthogonal
transformation:

R:R" — R* R is linear and R(x)-R(y) = x-y, x, y € R™

If an orthogonal motion is orientation preserving (i.e., the matrix whose
columns are Re,, ..., Re,, i = 1,..., n, has determinant +1), it is a rotation.
An example of an orthogonal motion which is not a rotation is given by the
reflection

p: R*—> R* X —X

when 7 is odd.
Any isometry B of Euclidean space may be written

B: R" — R", x> Rx + x,

where x, € R™ and R is an orthogonal motion. In other words, every isometry
of Euclidean space consists of an orthogonal motion R, followed by a trans-
lation T,,. We will call R the orthogonal component of B. If R is a rotation
we will say that B is a congruence. If not, we will say that B is a symmetry.

0.2 The Topology of Euclidean Space

The distance function d allows us, in the usual way, to define the metric
topology on R™. For x€ R" and € > 0, the e-ball centered at x is denoted
B(x) and is defined by

B(x):={yeR"|d(x,y) < €.

A set U = R" is called open if for every x € U there exists an € = ¢(x) > 0
such that B(x) < U. A set ¥ < R" is closed if R*\ V is open. Given a set
W < R™, W denotes its interior, i.e., the set of all x € W for which there exists
some € > 0 with B(x) = W.

A set U = R" is said to be a neighborhood of x, € R"if x, € U. A mapping
F: U— R" is continuous at x, if for every ¢ > 0 there exists a 8§ > 0 such
that F(U N By(x)) < B(Fx,). F is said to be continuous if it is continuous
atall xe U.

2



0.3 Differentiation in R*

Example. Linear functions are continuous

Let L be a linear function, i.e., L(ax + by) = aL(x) + bL(y) for a,be R,
x, y € R*. L may be written in terms of a matrix (af), | < i <n 1 <j < m,
where (L(x))Y = 2 a{x'. To show that L is continuous, we use the Schwarz
inequality. Writing |L|? for 3, , (a))?,

2

Lxit = 3, (Satx) < 3 (3 @r)- 3 6 = 1Ll
i i i i

Therefore |Lx — Lxo| < |L|:|x — xo|. From this, the continuity of L is

easily seen. Note: It follows that isometries B: R® — R™ are continuous: for

Bx — Bx, = R(x — Xx,), R being the orthogonal component of B, and R is

linear.

0.3 Differentiation in R*

Consider the set L(R", R™) of linear transformations from R" to R™. This set
has a natural real vector-space structure of dimension n-m. Addition of two
linear transformations L,, L, is defined by adding in the range; (L, + Ly)x :=
L,x + L,x. Scalar multiplication by « € R is defined by («L;)x := «(L;X).

In terms of the matrices (af) which represent elements L € L(R", R™),
addition corresponds to the usual matrix addition and scalar multiplication
to multiplication of matrices by scalars.

The bijection of L(R", R™) onto R™™, given by considering the matrix
representation (af) of a linear map L and identifying (@) with the vector
(a},...,a},as,...,a3,...,a.,...,ay), is norm-preserving. The norm |L|
agrees with the length (= norm) of its image vector in R™™.

Let U < R" be an open set, and suppose F: U— R™ is any continuous
map. F is said to be differentiable at x, € U if there exists a linear mapping
L = L(F, x,) € L(R*, R™) such that

lim |Fx — Fxo — L(x — Xxo)| _ 0.

x—x, lx - xo‘

It will be convenient to denote by o(x) an arbitrary function with

In terms of this notation, the equation above may be rewritten as
|Fx — Fxy — L(x — xp)| = o(x — xq).

If such an L = L(F, x,) exists, it is unique. Suppose L and L’ are two such
linear mappings with the required properties. Then, using the triangle
inequality,



0 Calculus in Euclidean Space

(L = LY(x — x0)| = |[(L — L')(x — xo) + Fx — Fx + Fxo — Fx,|
< |Fx — Fxo — L(x — Xo)| + |Fx — Fxq — L'(x — xo)|

= o(x — xg) + o(x — xp) = o(x — xo).

Thus [(L — L")(x — Xx,)| is o(x — x,). In particular, if x — x, = re,, then

r(z (a] — a(’)“)“2 = o(r).

Therefore, aj = a} for all i, j.

The unique linear map L = L(F, x,) is called the differential of F at x,,
which will also be denoted by dF,,, or simply dF.

If A is an arbitrary (not necessarily open) set in R", a mapping F: 4 — R™
is said to be differentiable on A4 if there exists an open set U = R" containing
A and a mapping G: U — R" such that G|, = F, and G is differentiable at
each x, e U.

Examples of differentiable mappings

1. L: R* — R™, any linear map. dL, = L, for all x e R".

2. B: R*— R™, an isometry. dB, = R, the orthogonal component of B.

3. All the elementary functions encountered in calculus of one variable are
differentiable; polynomials, rational functions, trigonometric functions,
the exponential and logarithm.

4. The maps (x, y)+> x-y from R* x R"into R and x+> |x|? from R" into R
are differentiable.

5. The familiar vector cross-product (x, y)+>x x y € R®, considered as a
map from R® x R? into R?, is differentiable. In terms of a basis for R?, if
X = (X1, X3, X3) and y = (y1, Y2, ¥s), then x x y = (x3y3 — X3¥a, Xay1 —
X1Y3s X1¥3 — X2)1).

It is an easy exercise to prove that the composition of two differentiable
mappings is differentiable.

A mapping F: U— R™, U open in R", is said to be continuously differen-
tiable, or C?, if F is differentiable at each x € U and the map dF: U —
L(R", R™), given by x — dF,, is continuous.

A mapping F: U— R™, U = R"is said to be twice continuously differenti-
able, or C?, if dF: U— L(R", R™) is differentiable, and its derivative is
continuous.

In an analogous manner, we may define k-times continuously differentiable
mappings, or C* mappings. If f'is k-times differentiable forany k = 1, 2,...,
fissaid to be C* (read ““ Cinfinity”’). Sometimes we will refer to C * mappings
as differentiable mappings when there is no possibility of confusion.

If U =€ R™, ¥ < R"are open sets and F: U — V is a bijective, differentiable
function such that F~1: ¥ — U is also differentiable, then F is called a
diffeomorphism (between U and V).

4



0.4 Tangent Space

If F: U— R™, U = R" is differentiable, then the m coordinate functions
F/(x%, ..., x") have partial derivatives 0F’/ox' = Fi with respect to each of
the n coordinates x'. From our definition of dF, : R™ — R", it follows that
the matrix of this linear map is given by the matrix of first derivatives of F
at xo, (F1\),,, the familiar Jacobian matrix.

The differential d?F = d(dF) of the differentiable function dF: U —
L(R", R™) at the point x, € U has the following matrix representation: dF is
determined by the n-m real valued functions F’/ox'. Therefore d%F,, is
determined by the (m x n-m)-matrix (8%F’/dx' 0x¥)|,,. The row-index in this
notation is {{} and k is the column-index. (The pairs {{} are ordered lexico-
graphically.)

0.4 Tangent Space

The concept of a tangent space will play a fundaimental role in our study of
differential geometry. For x, € R", the tangent space of R™ at x,, written
T.,R* or R%,, is the n-dimensional vector-space whose elements consist of
pairs (x,, x) € {xo} x R". The vector-space structure is defined by means of the
bijection

T,,R*— R", (x40, X) > x,

i.e., (x0, X) + (X0, ¥) = (X0, x + ) and a(x,, x) = (xo, ax).

Let U be a subset of R™. The tangent bundle of U, denoted TU, is the
disjoint union of the tangent spaces T,,R", x, € U, together with the canonical
projection #: TU — U, given by (x,, X)> X,. TU is in 1-1 correspondence
with U x R" via the bijection

(X0, X) € T ,R* € TUH> (x0, x) € U x R™.

In view of the generalizations we will make in subsequent chapters,
the interpretation of TU as the disjoint union of the tangent spaces T, ,R",
Xxo € U, is preferable to that of TU as U x R". On the other hand, the
interpretation of TU as U x R™ shows that TU may be considered as a
subset of R* x R™ = R2"_If U is open, then U x R" is also open in R**, so
it is clear what it means for a function G: TU — R* to be continuous or
differentiable. We may now define the notion of the differential of a differenti-
able mapping F: U — R™ in terms of the tangent bundle.

Let U be an open set in R" and let F: U — R™ be a differentiable function.
For each x, € U we define the map TF,,: T, ,R" — TriyR™ by (xq, X) >
(F(xo), dF.(x)). The map TF: TU — TR™ is now defined by TF|T,,R" :=
TF,,. TF is called the differential of F.

A word about notation: If we identify Tx,R" with R" in the canonical way,
and likewise Tr.,,R™ with R™, then instead of TF,,: TR — Tr,R™ we
write dF,: R* — R™.



0 Calculus in Euclidean Space

0.5 Local Behavior of Differentiable Functions
(Injective and Surjective Functions)

We shall need to use the following basic theorem:

0.5.1 Theorem (Inverse function theorem). Let U be an open neighborhood of
0 € R™. Suppose F: U — R™ is a differentiable function with F(0) = 0 € R™.
If dF,: R™ — R* is bijective, then there is an open neighborhood U’ < U
of 0 such that F|y.: U' — FU' is a diffeomorphism.

Such a function Fis said to be a local diffeomorphism (or, more precisely, a
local diffeomorphism at 0).

In order to state and prove an important consequence of the inverse func-
tion theorem, it is necessary to recall some facts about linear maps. A linear
map L: R* — R™ is injective, or 1-1, if and only if ker L := {xe R" | Lx = 0}
= {0}. This is equivalent, in turn, to the requirement that R™ has a direct
sum decomposition R™ = R™ @ R"™~" (into subspaces of dimension n and
m — n, respectively) such that L: R® — R'" is a bijection.

Similarly, a linear map L: R* — R™ is surjective, or onto, if and only if
n — m = dim ker L. This condition is equivalent to the existence of a direct
sum decomposition R* = R'™ @ R"™ ™ into subspaces of dimension m and
n — m, respectively, such that R™»~™ = ker L and L|g~: R™— R™ is a
bijection.

The next theorem shows that, locally, differentiable functions behave in a
manner analogous to linear maps, at least with respect to the injectivity and
surjectivity properties described above.

0.5.2 Theorem (Local linearization of differentiable mappings). Let U be an
open neighborhood of 0 € R". Suppose F: U — R™ is a differentiable function
with F(0) = 0.

i) If TF,: T,R™ — T,R™ is injective, then there exists a diffeomorphism g
of a neighborhood W of 0 € R™ onto a neighborhood g(W) of 0 € R™ such
that g o F is an injective linear map from some neighborhood of 0 € R*
into R™. In fact, g o F(xy, ..., X;) = (X1,..., Xn, 0,...,0).

ii) If TF,: T,R™ — T,R™ is surjective, there exists a diffeomorphism h of
a neighborhood V of 0 € R" onto a neighborhood h(V) of 0 € R™ such that
F o h is a surjective linear map from some neighborhood of 0 € R" onto a
neighborhood of 0 € R™. In fact, Fo h(X1, ..., Xmy .« oy Xn) = (X1, .. .y Xm)-

Remark. The converse of each of the above statements is clearly true.

PROOF. i) Suppose dF,: R* — R™ is injective. Write R™ = R’ @ R"™~" with
dFy(R™") = R'™. Define &:R"=R"@R™ ">R"=R"@R™ "ina
neighborhood of 0 by v = (', v") > F(¢") + (0, v"). Here the R'™ on the
left-hand side is identified with R". Clearly, dg, = dF, + id | R"™"™.



0.6 Exercise

Therefore dg, is bijective and we may use the inverse function theorem
(0.5.1) to assert the existence of a local differentiable inverse g = g~1.

Since gog =1id, gog| R™ =id | R™ locally, and thus go F(v') =
(v', 0). This proves g o F is a linear injective function from a neighborhood
of 0in R*into R* < R*"@® R"™~" = R™.

ii) Suppose dF, : R* — R™ is surjective. Decomposing R* = R'™ @ R"*~™ so
that dF, | R™:R'™ — R™ is a bijection, define i: R* = R™ @ R"™ ™ —»
R* = R @ R"™ ™ in a neighborhood of zero by v = (v, v") > (Fv, v").
Here we have identified R'™ on the right-hand side with R™.

Since dhy, = dF, | R'™ + id | R"~™is bijective, A has a local inverse h = h~1.

Since hoh = idlocally, A(F(v',v"),v") = (v, v")and therefore Fo h(F(v',v"),0") =

F(v', v"). This means that F o h is given locally by the projection R* = R™ @

R"™-m — R'™ onto the first m coordinates, which, of course, is linear and
surjective. O

0.6 Exercise

Prove that any distance-preserving mapping B: R — R" may be written in the form
Bx = Rx + Xo,
an orthogonal motion followed by a translation.



Curves

1.1 Definitions

1.1.1 Definitions. Let 7 = R be an interval. For our purposes, a (parametrized)
" curve in R™ is a C*® mapping c: I — R". ¢ will be said to be regular if for
all te 1, é(t) # 0.

Remarks. 1. If I is not an open interval, we need to make explicit what it
means for ¢ to be C~. There exists an open interval I* containing / and a
C® mapping c*: I* — R" such that ¢ = c*|I.

. The variable ¢ € I is called the parameter of the curve.

. The tangent space R, = T,;R of R at 7, €I has a distinguished basis
1 = (%, 1). As an alternate notation we will sometimes write d/dt for
(t, 1) = 1.

4. If c: I— R" is a curve, the vector dc, (1) € Tc,,R™ is well defined. Since
le(t) — e(to) — dey(1)(t — to)] = o(t — 1), it follows immediately that
dey (1) = lim,_, [c(t) — c(t6)]/(t — to) = ¢(t,), the derivative of the R"-
valued function ¢(t) at 7, € I.

w N

1.1.2 Definitions. i) A vector field along c: I — R™ is a differentiable mapping
X: I— R™ The vector X (), that is the value of X ata given ¢ € /, will be
thought of as lying in the copy of R™ identified with T, R" (see Figure 1.1).

ii) The tangent vector field of c: I — R" is the vector field along ¢: I — R*
given by t+ é(t).

1.1.3 Definition. Let c: I — R", é: I — R" be two curves. A diffeomorphism
é:I— I such that ¢ = co ¢ is called a parameter transformation or a

change of variables relating ¢ to ¢. The map ¢ is called orientation preserving
if ¢’ > 0.



1.1 Definitions

Figure 1.1

Remark. Relationship by a parameter transformation is clearly an equivalence
relation on the set of all curves in R™. An equivalence class of curves is called
an unparameterized curve.

1.1.4 Definitions. i) The curve c(2), t € I, is said to be parameterized by arc
length if |é(r)] = 1. We will sometimes refer to such a curve as a
unit-speed curve.

ii) The length of c is given by the integral L(c) := L |é(2)] ar.
iii) The integral E(c) := % L ¢(1)? dt is called the energy integral of c or,
simply, the energy of c.

1.1.5 Proposition. Every regular curve c: I — R™ can be parameterized by arc
length. In other words, given a regular curve c: I — R" there is a change
of variables ¢: J — I such that |(c o ¢)'(s)| = 1.

ProoF. The desired equation for ¢ is |dc/ds| = |dc/dt|-|d$/ds| = 1. Define

s(t) = '[:o |é(#")| dt’, to €1, and let s(#) = ¢~*(¢). Since c is regular, ¢ exists

he2
des c(t),t>0
Y
N A
u ‘\‘
N — o
€
------ N
K - bc(t)
\\‘/ ¢
™ €2 clt), 1<0
(a) (b)

Figure 1.2 (a) Helix; (b) cusp



