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Preface

This book is based on the Computational Physics course that has been developed
and taught by the authors at Purdue for more than a decade. The goal of this course
is to introduce students to some basic numerical techniques and then apply these
techniques to a number of modern topics, that is, problems of current interest to
physicists. Students with some experience in differential and integral calculus can
readily grasp rather sophisticated computational techniques. These students can
use computers as tools with which to attack and solve problems that they would not
ordinarily encounter in the undergraduate curriculum. We have used this approach
to try to convey the excitement of physics, with a variety of problems of current
interest.

While there are many texts with the terms “computers” and “physics” in their
titles, most of the books in this area tend to focus heavily on numerical methods
rather than physics. Since our goal is to teach a course on physics, rather than nu-
merical methods, these books are not a good match for our course. While there are
a few books that emphasize the physics that can be done with numerical methods,
they are either too advanced for use by undergraduates, or (more commonly) they
fail to deal with the types of problems that can profit most from a numerical ap-
proach. In too many cases they tend to simply treat the standard problems, which
are already dealt with in many traditional texts using analytic methods. Hence the
basic motivation for creating this book.

The material for our book is taken from a wide variety of “primary” sources,
as will become clear from the references at the end of each chapter. In many cases
we started with papers from the recent physics literature and then distilled them
to produce problems suitable for an undergraduate class. While it is necessary
for this book to introduce a variety of numerical methods of interest to physicists,
the overriding emphasis is on the physics that can be done with these methods.
The majority of the problems described in this book cannot be solved with purely
analytic techniques. A computational approach is required in most cases, and we
have tried to use the computer to make the physics as clear and as interesting as
possible.

As readers scan through this new edition, they will notice a number of changes.
Perhaps the most important is that there are now two authors. Besides simply shar-
ing the workload of preparing the new edition, this additional expertise has allowed
us to add many new topics (and improve old ones!). In fact, we have added much
new material on subjects ranging from diffusion on fractals and cellular automata,
to the physics of musical instruments (a new chapter) and a new algorithm for
doing time-dependent quantum mechanical problems.

This book has also been reorganized in several ways. The first edition gave
programming examples in the True Basic language. Now, in this new edition the
reliance on the programming language True Basic has been removed. We recog-
nize that present-day students will likely be using many different languages, so we
have chosen to employ a very general pseudocode to illustrate the algorithms. This

ix



x Preface

pseudocode can easily be translated into virtually any language, and hence support
the work of students in a wide variety of programming languages. However, for
those students who prefer to see programs or routines in a “real” programming
language, the True Basic programs from the first edition are still available at our
website,! www.physics.purdue.edu/~giordano/comp-phys.html. Our plan is to
add more programs, in other languages, to this website in the future, so that it can
serve as a useful resource for students (and teachers). Another change in this new
edition is that we have moved much of the discussion of the algorithms themselves
into the appendices, and have added considerably to the depth and rigor of these
discussions. It is our hope that the appendices can serve as reference material for
students as they work their way through the physics that is covered in the chapters.
This separation also allows the chapters to focus even more on the physics of the
various topics.

How to Use This Book.

The first edition contained more than could easily be covered in a single course.
The second edition contains even more, so it is clearly not possible to cover it
all in one semester. The first few chapters rely mainly on elementary mechanics,
and can be appreciated with a background at the freshman level. This material
can be augmented with selected topics from later chapters .(such as on random
processes in Chapter 7 and molecular dynamics in Chapter 9) to produce a full-
semester course. There is also ample material for a course aimed at advanced
undergraduates and beginning graduate students. For example, the material on
random processes (Chapter 7) and phase transitions (Chapter 8) can be added to
the work on quantum mechanics (Chapter 10) to fill most of a semester at this level.
A third way to use the material in this book is for an interdisciplinary course, in
which case the chapters on waves (Chapter 6), musical instruments (Chapter 11),
and interdisciplinary topics (Chapter 12) could form the core of a course.

The first edition would not have been possible without the help of many peo-
ple, and we would like to thank them again. The support of Arnold Tubis and the
Department of Physics at Purdue, along with that of the National Science Foun-
dation, made our course, and hence this book, possible. Many graduate students
helped us teach early versions of this course, including Miguel Castro, Chris Parks,
Jan Spitz, Stuart Burnett, Todd Jacobs, and Dan Lawrence. Of course, the un-
dergraduate students who have willingly submitted to the course have provided
much useful feedback; there are too many to mention them all here, although Mike
Pennington deserves a special thanks. Many colleagues have provided essential ad-
vice and encouragement on the manuscript, including Todd Jacobs, Mark Haugan,
Paul Muzikar, along with the reviewers Wolfgang Christian, Alejandro Garcia, Jan
Tobochnik, and Rodney L. Varley, who were very polite and constructive. The
support of the first edition editors Ray Henderson and Alison Reeves was much
valued, while the final impetus to actually begin this book was provided by the
well-timed encouragement of Earl Prohofsky and Betsy Beasley.

!The URL listed for the first edition, www.physics.purdue.edu/~ng/comp-phys.html, will take
you to this new website.



Preface xi

The second edition owes much to our many colleagues who have sent us sug-
gestions and new ideas for the new edition. In particular, we would like to thank
James Behrens, Bob Delaney, Denis Donnelly, Eamin Jamshidi, Michael Oczkowski,
Steve Turcotte, and Kobus Visser for alerting us to errors in the first edition, Aaron
Montgomery for spotting (and correcting) a mistake in a draft of the second edi-
tion, and Eduardo Cuansing, Harvey Gould and Jan Tobochnik for their various
contributions and general support. We also greatly appreciate the many construc-
tive comments and suggestions from reviewers Gus Hart, James MacDonald, Micha
Tomkiewicz, Thomas Vojta, and Matt Wood concerning drafts of the second edi-
tion. And of course, we are grateful to our Editors at Prentice-Hall, Erik Fahlgren
and Christian Botting, for patiently guiding (and proddmg) us through the prepa-
ration of this new edition.

In closing we would like to reaffirm that our goal has been to write a book that
uses computational methods to do interesting physics. While numerical methods
can be fun, they are not our primary purpose. We hope that this book helps the
student in all of us learn about and enjoy doing physics.

Nicholas J. Giordano and Hisao Nakanishi
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A First Numerical Problem

Many problems encountered in physics involve ordinary differential equations. Ex-
amples include projectile motion, harmonic motion, and celestial mechanics, topics
we will be discussing extensively in the next few chapters. We therefore begin with
a problem involving a first-order differential equation and use it to introduce some
computational techniques that will be employed extensively in later chapters. We
will also proceed step by step through the construction of a program to deal with
this problem, so as to illustrate in detail how a numerical approach is translated
into a (working) computer program.

In this chapter it is not possible to provide a complete introduction to pro-
gramming for students who have no previous exposure to the subject. Rather, our
goal is to enable students with some (even limited) experience in programming to
begin writing programs to treat the physics that will be encountered in this book.
However, those students with no prior experience should not give up hope! With
some extra effort and access to a good instructor or book on computer program-
ming (or both), such students should be able to handle the material in this and
later chapters.

1.1 RADIOACTIVE DECAY

It is well known that many nuclei are unstable. A typical example is the nuclear
isotope 2*U (the uranium nucleus that contains 143 neutrons and 92 protons, for
a total of 235 nucleons), which has a small, but not insignificant, probability for
decaying into two nuclei of approximately half its size, along with an assortment
of protons, neutrons, electrons, and alpha particles. This process of radioactive
decay is random in the following sense. If you were given a single 23°U nucleus,
you would not be able to predict precisely when its decay would take place. The
best you could do would be to give the probability for decay. An equivalent way to
describe such a process would be to give the average time for decay; for 23°U the
mean lifetime is approximately 1 x 10° years.

It is useful to imagine that we have a sample containing a large number of 235U
nuclei, which would usually be the case if we were actually doing an experiment to
study radioactive decay. If Ny (t) is the number of uranium nuclei that are present
in the sample at time ¢, the behavior is governed by the differential equation

dNy _ Ny

ity o5 AT i k1)

where 7 is the “time constant” for the decay. You can show by direct substitution
that the solution to this differential equation is

Ny = Ny(0)e /T, (1.2)

1



2 Chapter 1 A First Numerical Problem

where N (0) is the number of nuclei present at ¢ = 0. This solution may be familiar
to you; similar equations and similar solutions are found in many other contexts.’
We note that at time t = 7 a fraction e~! of the nuclei that were initially present
has not yet decayed. It turns out that 7 is also the mean lifetime of a nucleus.

1.2 A NUMERICAL APPROACH

While the differential equation (1.1) ¢an be solved without resorting to a numerical
approach, this problem is useful for introducing several computational methods
that will be used extensively in later chapters. With that in mind we now consider
a simple method for solving this problem numerically. Our goal is to obtain Ny as
a function of . Given the value of Ny at one particular value of ¢ (usually at ¢ = 0),
we want to estimate its value at later times. This is called an initial value problem,
and various general approaches for solving such ordinary differential equations are
discussed in Appendix A. Here we will describe one particularly useful line of attack
that is based on the Taylor expansion for Ny,

o dNy 1 d*Ny
Ny(At) = Ny(0) + TAt 5 3 a2

a3 e S (1.3)

where Ny;(0) is the value of our function at time ¢ = 0, Ny (At) is its value at
t = At, and the derivatives are evaluated at t = 0. If we take At to be small, then
it is usually a good approximation to simply ignore the terms that involve second
and higher powers of At, leaving us with

N,
Nu(At) ~ Ny(0) + dd—tUAt. (1.4)

The same result can be obtained from the definition of a derivative. The
derivative of Ny evaluated at time ¢ can be written as

dNy — lim Nu(t+At) - Nu(t) . Nu(t—l-At) — Nu(t)

dt =~ At—0 At At ’

(1.5)

where in the last approximation we have assumed that At is small but nonzero.
We can rearrange this to obtain

Nu(t-i—At) ~ Ny(t) + gajztg At (1.6)
which is equivalent to (1.4). It is important to recognize that this is an approzima-
tion, which is why it contains the ~ symbol, not the = symbol. The error terms
that were dropped in deriving this result are of order (At)?, which makes them at
least one factor of At smaller than any of the terms in (1.6). Hence, by making At
small, we would expect that the error terms can be made negligible. This is, in fact,
the case in many problems, but there are situations in which the error terms can

For example, an equation of this kind describes the time dependence of the voltage across a
capacitor in an RC circuit.



Section 1.3 Design and Construction of a Working Program: Codes and Pseudocodes 3

still make life complicated. Therefore, it is important to be careful when discussing
the errors involved in this numerical approach; we will return to this point later in
this chapter, and in more detail in Appendix A.

From the physics of the problem we know the functional form of the derivative
(1.1), and if we insert it into (1.6) we obtain

Ny(t+ At) =~ Nu(t) = NUT(t)

At . (1.7)

This approximation forms the basis for a numerical solution of our radioactive decay
problem. Given that we know the value of Ny at some value of ¢, we can use (1.7) to
estimate its value a time At later.? Usually we are given, or can manage to discover,
the initial value of the function, that is, the value at time ¢ = 0. We can then employ
(1.7) to estimate its value at ¢ = At. This result can be used in turn to estimate the
value at t = 2At, 3At, ete., and thereby lead to an approximate solution Ny (nAt)
at times nAt where n is an integer.? We cannot emphasize too strongly that the
numerical “solution” obtained in this way is only an approzimation to the “true,”
or exact, solution. Of course, one of our goals is to make the difference between the
two negligible.

The approach to calculating Ny (#) embodied in (1.6) and (1.7) is known as
the Euler method and is a useful general algorithm for solving ordinary differential
equations. We will use this approach, and closely related methods, extensively in
this book. Other methods for solving equations of this kind will be discussed in
later chapters, and more systematic discussions of all of these approaches and the
typical errors associated with them are the subject of Appendix A. For now, the
reader should realize that while the Euler method arises in a very natural way, it
is certainly not the only algorithm for dealing with problems of this sort. We will
see that the different approaches have their own strengths and weaknesses, which
make them more or less suitable for different types of problems.

1.3 DESIGN AND CONSTRUCTION OF A WORKING PROGRAM: CODES AND
PSEUDOCODES

In the previous section we introduced the Euler method as the basis for obtaining
a numerical solution to our radioactive decay problem. We now consider how to
translate that algorithm into a working computer program. Perhaps the first choice
that one must make in writing a program is the choice of programming language.
From the authors’ experiences, there are many programming languages that are
well suited for the kinds of problems we address in this book, and it is impossible
for us to give example programs in all of these languages. However, it is possible
to describe the structure of a program in a general way that is useful to users of
many different languages. We will do this using a “language” known as pseudocode.
This is not a precise programming language, but rather a description of the essential

2 As you might expect, the quality of this estimate, i.e., its accuracy, will depend on the value
of At. This is a very important issue that we will be discussing in some detail below and in
Appendix A.

3Note that errors made each at each time step, i.e., each time (1.7) is used, will accumulate.
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parts of an algorithm, expressed in “common” language. The idea is to give enough
detail so that you (the readers of this book) can see how to translate each piece of
pseudocode into the specific instructions of your favorite programming language.
In most of this book, we will give our examples only in pseudocode. However,
in this chapter we will work through an example using pseudocode along with
actual codes in two popular languages, Fortran and C, so that you can see how
the translation from pseudocode to an actual programming language can be done.?
Working programs for many of the problems in this book are available in Fortran,
C, and Basic at our Web site.®.

While programming, like handwriting, is a highly individualized process, there
are certain recommended practices. After all, as in handwriting, it is important
that we be able to understand programs written by others, as well as those we
ourselves have written! With that in mind, this book will try to promote proper
programming habits. The (admittedly very loose) analogy between handwriting
and programming can be carried one step further. The first thing you should do
in writing any program is to think. Before writing any detailed code, construct an
outline of how the problem is to be solved and what variables or parameters will
be needed. Indeed, the pseudocode version of a program will often provide this
outline. For our decay problem we have already laid the foundation for a numerical
solution in our derivation of (1.7). This equation also contains all of the variables
we will need, Ny, t, 7, and At. Our stated goal was to calculate Ny (t), but since
the numerical approximation (1.7) involves the values of Ny only at times ¢ = 0,
t = At, t = 2At, ete., we will actually calculate Ny at just these values of t. We
will use an array to store the values of Ny for later use. An array is simply a table
of numbers (which will be described in more detail shortly). The first element in
our array, that is, the first entry in the table, will contain Ny at £ = 0, the second
element will be the value at ¢ = At, and so on. Our general plan is then to apply
(1.7) repetitively to calculate the values of Ny(t).

The overall structure of the program consists of four basic tasks: (1) declare
the necessary variables, (2) initialize all variables and parameters, (3) do the cal-
culation, and (4) store the results.

EXAMPLE 1.1 Pseudocode for the main program portion of the radioactive
decay problem

o Some comment text to describe the nature of the program.

> Declare necessary variables and arrays.
> nitialize variables.

> Do the actual calculation.

> store the results.

4We are certainly not implying that everyone should use Fortran or C, but these are the authors’
favorites.

* Syuw .physics.purdue.edu/~giordano/comp-phys.html



