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CHAPTER 11
Validation

As you saw in previous chapters, many web applications involve user input. Sadly,
however, users make mistakes: they skip required fields, they enter phone numbers
with the wrong number of digits, and they send to your application all manner of
incorrectly formatted data. Your database routines can choke on corrupted data, and
orders can be lost, for example, if a credit card number is entered incorrectly or an
address is omitted, so it is imperative to validate user input.

Traditionally, it takes a great deal of time and effort to write reliable validation code.
Each field must be checked, and routines must be created for ensuring data integ-
rity. If bad data is found, error messages must be displayed so that the user knows
there is a problem and knows how to correct it.

In a given application, you may choose to validate that certain fields have a value,
that the values fall within a given range, or that the data is formatted correctly. For
example, when processing an order, you may need to ensure the user has input an
address and phone number, the phone number has the right number of digits (and
no letters), and that the Social Security number entered is in the appropriate form of
nine digits separated with hyphens.

Some applications require more complex validation, in which one field is validated
to be within a range established by two other fields. For example, in one field you
might ask what date a customer wishes to arrive at your hotel, and in a second field
you might ask for the departure date. When the user books dinner, you’ll want to
ensure the date is between the arrival and departure dates.

There is no limit to the complexity of the validation routines you may need to write.
Credit cards have checksums built into their values, as do ISBN numbers. Zip and
postal codes follow complex patterns, as do international phone numbers. You may
need to validate passwords, membership numbers, dollar amounts, dates, runway
choices, and launch codes.

In addition, you usually want all of this validation to happen on the client side, so you
can avoid the delay of repeated round trips to the server while the user is tinkering
with his input. In the past, this was solved by writing client-side JavaScript to validate

579



the input, and then writing server-side script to handle input from browsers that don’t
support client-side programming. In addition, as a security check, you may want to do
server-side validation even though you have client-side validation, because users can cir-
cumvent validation code by deliberately spoofing requests. Traditionally, this involved
writing your validation code twice, once for the client and once for the server.

As you can see, validating user input can require a lot of hard work, but ASP.NET sim-
plifies this process considerably by providing rich controls for this task. The validation
controls allow you to specify how and where the error messages will be displayed:
inline with the input controls, aggregated together in a summary report, or both. These
controls can be used to validate input for both HTML and ASP.NET server controls.

You add validation controls to your ASP.NET document as you would add any other
control. Within the declaration of the validation control, you specify which other
control is being validated. You may freely combine the various validation controls,
and you may even write your own custom validation controls, as you'll see later in
this chapter.

With up-level browsers that support DHTML, such as Internet Explorer 4 and later,
NET validation is done on the client side, avoiding the necessity of a round trip to
the server. With down-level browsers or browsers with scripting turned off, your
code is unchanged, but the code sent to the client ensures validation at the server.

o o
\

Even when client-side validation is done, the values are also validated
on the server side as a security measure.

Because client-side validation will prevent your server-side code from ever running if
the control is invalid, sometimes you may want to force server-side validation. In that
case, add a ClientTarget attribute to the @Page directive:
<% @Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="Default aspx"
ClientTarget="downlevel"
%>
This directive will cause the validation to occur on the server even if your browser
would have supported DHTML and client-side validation.

Sometimes you don’t want any validation to occur, such as when a Cancel button is
clicked. To specify this, many server controls, such as Button, ImageButton, LinkButton,
ListControl, and TextBox, have a CausesValidation property, which dictates whether
validation is performed on the page when the control’s default event is raised.

If CausesValidation is set to true, which is the default value, the postback will not
occur if any control on the page fails validation. If CausesValidation is set to false,
however, no validation will occur when that button is used to post the page.

ASP.NET supports the following validation controls:
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RequiredFieldValidator
Ensures the user does not skip over your input control. A RequiredFieldValidator
can be tied to a TextBox to force input into the TextBox. With selection controls,
such as a DropDownlList or RadioButtons, the RequiredFieldValidator ensures the
user makes a selection other than the default value you specify. The
RequiredFieldvalidator does not examine the validity of the data, but only ensures
that some data is entered or chosen.

RangeValidator
Ensures the value entered is within a specified lower and upper boundary. You
can check the range within a pair of numbers (greater than 10 and less than

100), a pair of characters (greater than D and less than K), or a pair of dates
(after 1/1/09 and before 2/28/09).

CompareValidator
Compares the user’s entry against another value. It can compare against a con-

stant you specify at design time, or against a property value of another control. It
can also compare against a database value.

RegularExpressionValidator
One of the most powerful validators, RegularExpressionvValidator compares the
user’s entry with a regular expression you provide. You can use this validator to
check for valid Social Security numbers, phone numbers, passwords, and so on.

CustomValidator
For use if none of the previous controls meets your needs. CustomValidator checks
the user’s entry against whatever algorithm you provide in a custom method.

In the remainder of this chapter, we’ll examine how to use each of these controls to
validate data in ASP.NET applications. You'll also see how some of the extender
controls that come with the ASP.NET AJAX Control Toolkit aid in guiding a user’s
input toward the desired entry.

The RequiredFieldValidator

The RequiredFieldValidator ensures the user provides a valid value for your control.
To demonstrate, create for the chapter a new website called C11_Validation and then
add a new web page called RequiredFieldValidator.aspx. You'll create a simple form
nominally for reporting bugs, as shown in Figure 11-1.

Validator controls will be added to the form such that when the user clicks the Sub-
mit Bug button, the page is validated to ensure that each field has been modified. If
not, the offending field is marked with an error message in red. See Figure 11-2.

To help with layout, add an HTML table to the page with five rows and three col-
umns. (You could equally put each row of the table in a <div> or <p> tag and lay
things out with CSS, but that would just complicate the code here.) In the first row,
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_RequiredFieldValidator.aspx | - X

Bug Reporter
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(355 LT S ST T )
| Please report your bug here
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ﬂ Please provide bug details

b oA

[@ Design | o Spit | @ Souwrce | [4][<formstrmBugs>][<wable> | [<wo][<ta>]  [}]

Figure 11-1. RequiredFieldValidator.aspx design

add a Label control called 1blMsg. Later on, you’ll use the Page Load method to
change its Text property depending on whether the page is valid or not.

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="RequiredFieldValidator.aspx.cs" Inherits="RequiredFieldvalidator" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<title>Required Field Validator Demo</title>

</head>

<body>
<h1>Bug Reporter</h1>
<form runat="server" id="frmBugs">
<table>
<tr>
<td colspan="3" align="center">
<asp:Label ID="1blMsg" Text="Please report your bug here"
runat="server" />
</td>
</tr>
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@ Required Field Validator Demo - Windows Internet Explorer =
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Book ||~ Please Pick A Book - =] [Please choose abook |

i' | e 1st -

& [

‘Edﬁon ! . ;:: ‘Pleas.e pick an edition ;
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| [ SubmitBug N __J

L -

Figure 11-2. Required field validation errors reported when page is submitted

The second row contains a DropDownlist control (ddlBooks) and a
RequiredFieldvalidator control (rfvBooks). Besides the mandatory runat and ID, its
most important properties are ControlToValidate, which identifies the control that it
should validate, and ErrorMessage, which contains the text the control will display if
a value has not been selected in the list, or if the value selected is the same as the one
given in the InitialValue property.

rfvBooks also has a Display property, which is set to Static. This tells ASP.NET to
allocate room on the page for the validator regardless of whether there is a message
to display. If this property is set to Dynamic, space will not be allocated until (and
unless) an error message is displayed.

<tr>
<td>Book</td>
<td>
<asp:DropDownList ID="dd1Books" runat="server">
<asp:ListItem>-- Please Pick A Book --</asp:ListItem>
<asp:ListItem>Programming ASP.NET</asp:ListItem>
<asp:LlistItem>Learning ASP.NET With AJAX</asp:lListItem>
<asp:ListItem>Programming C# 2008</asp:ListItem>
<asp:ListItem>Programming Visual Basic 2008</asp:ListItem>
</asp:DropDownlList>
</td>
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<td>

<asp:RequiredFieldValidator ID="rfvBooks" ControlToValidate="ddlBooks"
Display="Static" InitialValue="-- Please Pick A Book --"
runat="server" ErrorMessage="Please choose a book" />
</td>
</tr>

Dynamic allocation is powerful, but it can cause your controls to bounce around on
the page when the message is displayed. For example, if you set all the validation
controls to Dynamic on this page, no space will be allocated for them. If you then click
the Submit Bug button and one of the controls is not validated, the validators’ error
text will display, widening the table and relocating the Submit Bug button and Label
that are centered across the whole table.

The third row in the table contains a RadioButtonList control (rblEdition) and
another RequiredFieldValidator (rfvEdition) set to validate it. In this case,
rfvEdition does not have its InitialValue property set. Because the control is a radio
button list, the validator knows the user is required to pick one of the buttons; if any
button is chosen, the validation will be satisfied. If no button is chosen, the valida-
tor’s error message will be displayed.

<tr>
<td>
Edition:
</td>
<td>
<asp:RadioButtonList ID="rblEdition" RepeatlLayout="Flow"
runat="server">
<asp:ListItem>ist</asp:ListItem>
<asp:ListItem>2nd</asp:ListItem>
<asp:ListItem>3rd</asp:ListItem>
<asp:ListItem>4th</asp:ListItem>
</asp:RadioButtonList>
</td>
<td>
<asp:RequiredFieldValidator ID="rfvEdition"
ControlToValidate="rblEdition"
Display="Static" runat="server"
ErrorMessage="Please pick an edition" />
</td>
</tr>

To complete the example, the fourth row contains a multiline TextBox (txtBug) and a
third RequiredFieldvalidator (rfvBug) set to monitor it. Again, a user has either
added some text to the TextBox or not, so no Initialvalue property needs to be set
on rfvBug.

The fifth and final row in the table contains a simple Button control, which when
clicked automatically causes the page to initiate validation on the browser according
to the rules set out in the three validation controls you've added to the page.
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<tr>
<td>Bug: </td>
<td>
<asp:TextBox ID="txtBug" runat="server" TextMode="MultilLine" />
</td>
<td>
<asp:RequiredFieldValidator ID="rfvBug"
ControlToValidate="txtBug" Display="Static"
runat="server" ErrorMessage="Please provide bug details" />
</td>
</tr>
<tr>
<td colspan="3" align="center">
<asp:Button ID="btnSubmit" Text="Submit Bug" runat="server" />
</td>
</tr>
</table>
</form>
</body>
</html>
<!-- end of RequiredFieldValidator.aspx --»>

If you run the page now and click the Submit Bug button without making any
changes on the form, each control being validated is checked and error messages are
displayed, as shown previously in Figure 11-2.

Once validation has occurred, ASP.NET then posts back to the server when any
server-side validation occurs. If that validation also passes, the Page’s IsValid prop-
erty is set to true or false depending on whether the value in every control being
monitored is valid.

To demonstrate, add to the code-behind page in RequiredFieldValidator.aspx a hand-
ler for the Submit Bug button’s Click event, and then add the highlighted code in
Example 11-1.

Example 11-1. RequiredFieldValidator.aspx.cs in full

using System;
using System.Web.UI;

public partial class RequiredFieldValidator : Page

{
protected void btnSubmit Click(object sender, EventArgs e)
{
if (Page.IsValid)
1blMsg.Text = "Page is valid";
}
else
1blMsg.Text = "Some of the fields still have no value";
}
}
}
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If you run the page again, notice that when the Submit Bug button is clicked, the
page is posted to the server only if all client-side validation routines return true. If
you view the source for the page, you'll see the following code, which is injected into
the page and enforces this behavior:

<script type="text/javascript">

//<1 [CDATA[

function WebForm_OnSubmit() {

if (typeof(ValidatorOnSubmit) == "function" &&
ValidatorOnSubmit() == false) return false;

return true;

}

/711>

</script>

)

The text that AJAX Control Toolkit extender controls, such as the

WatermarkExtender and MaskedEditExtender, add into a TextBox does
+* not affect whether the RequiredFieldvalidator works. The watermark
" or mask does not count as a value having been entered.

The Summary Control

You can decide how and where validation errors are reported. You are not required
to place validator controls alongside the control they are validating, although it does
help to identify which text box or list control has been filled out incorrectly. For
forms of any size, though, a good strategy to help a user identify her mistakes is to
summarize all the validation failures with a ValidationSummary control. This control
can place a summary of the errors in a bulleted list, a simple list, or a paragraph that
appears on the web page or in a pop-up message box.

To demonstrate, add to the website a new page called ValidationSummary.aspx and
copy the contents of RequiredFieldValidator.aspx into it. Add a ValidationSummary
control at the bottom of the page, between the closing </table> and </form> tags.

<tr>
<td colspan="3" align="center">
<asp:Button ID="btnSubmit" Text="Submit Bug" runat="server" />
</td>
</tr>
</table>
<asp:ValidationSummary ID="ValidationSummary1" runat="server"
DisplayMode="BulletList"
HeaderText="The following errors were found: "
ShowSummary="true" />
</form>
</body>
</html>

Three properties are set on the ValidationSummary control besides the mandatory
runat and ID:

586 | Chapter11: Validation



DisplayMode
Sets the way in which those errors are shown in the summary. Possible values are
BulletList (shown in Figure 11-3), List, and SingleParagraph.

HeaderText
Sets the header that will be displayed if there are any errors to report.

ShowSummazry
Indicates that the errors should be shown in the body of the HTML document. It
has a sister property, ShowMessageBox, which will display the errors in a pop-up
message box if set to true. You can set both to true if desired.

Now save and run the page. If you click the Submit Bug button, the text in the vali-
dator controls’ ErrorMessage attributes will be displayed in the summary if this con-

trol reports a validation error, as shown in Figure 11-3.

-
@ ValidationSummary Demo - Windows Internet Explorer

:

Bug Reporter

Please report your bug here

)« | €] https/iocalhost:s5725/C11 Validation/ValidationSummary.aspx  +| 43| X |

}Book si~ Please Pick A Book —

| EP‘fease choose a book

r 1st l
e |

Edition o ii}g !Pkfase pick an edition
 4th ‘

Bug: ple”:se provide bug details

i
i

Submit Bug

The following errors were found:

« Please choose a book
s Please pick an edition
» Please provide bug details

e

Figure 11-3. ValidationSummary.aspx

Figure 11-4 shows the ValidationSummary with ShowMessageBox set to true.

The Summary Control
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