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PREFACE

This series, Chemical Sensors: Simulation and Modeling, is the perfect comple-
ment to Momentum Press’s six-volume reference series, Chemical Sensors:
Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor
Technologies, which present detailed information about materials, technologies,
fabrication, and applications of various devices for chemical sensing. Chemical
sensors are integral to the automation of myriad industrial processes and every-
day monitoring of such activities as public safety, engine performance, medical
therapeutics, and many more.

Despite the large number of chemical sensors already on the market, selec-
tion and design of a suitable sensor for a new application is a difficult task for
the design engineer. Careful selection of the sensing material, sensor platform,
technology of synthesis or deposition of sensitive materials, appropriate coatings
and membranes, and the sampling system is very important, because those deci-
sions can determine the specificity, sensitivity, response time, and stability of the
final device. Selective functionalization of the sensor is also critical to achieving
the required operating parameters. Therefore, in designing a chemical sensor, de-
velopers have to answer the enormous questions related to properties of sensing
materials and their functioning in various environments. This five-volume com-
prehensive reference work analyzes approaches used for computer simulation and
modeling in various fields of chemical sensing and discusses various phenomena
important for chemical sensing, such as surface diffusion, adsorption, surface
reactions, sintering, conductivity, mass transport, interphase interactions, etc.
In these volumes it is shown that theoretical modeling and simulation of the pro-
cesses, being a basic for chemical sensor operation, can provide considerable
assistance in choosing both optimal materials and optimal configurations of
sensing elements for use in chemical sensors. The theoretical simulation and
modeling of sensing material behavior during interactions with gases and liquid
surroundings can promote understanding of the nature of effects responsible for
high effectiveness of chemical sensors operation as well. Nevertheless, we have to
understand that only very a few aspects of chemistry can be computed exactly.
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However, just as not all spectra are perfectly resolved, often a qualitative or ap-
proximate computation can give useful insight into the chemistry of studied phe-
nomena. For example, the modeling of surface-molecule interactions, which can
lead to changes in the basic properties of sensing materials, can show how these
steps are linked with the macroscopic parameters describing the sensor response.
Using quantum mechanics calculations, it is possible to determine parameters
of the energetic (electronic) levels of the surface, both inherent ones and those
introduced by adsorbed species, adsorption complexes, the precursor state, etc.
Statistical thermodynamics and kinetics can allow one to link those calculated
surface parameters with surface coverage of adsorbed species corresponding to
real experimental conditions (dependent on temperature, pressure, etc.). Finally,
phenomenological modeling can tie together theoretically calculated characteris-
tics with real sensor parameters. This modeling may include modeling of hot plat-
forms, modern approaches to the study of sensing effects, modeling of processes
responsible for chemical sensing, phenomenological modeling of operating char-
acteristics of chemical sensors, etc.. In addition, it is necessary to recognize that
in many cases researchers are in urgent need of theory, since many experimental
observations, particularly in such fields as optical and electron spectroscopy, can
hardly be interpreted correctly without applying detailed theoretical calculations.

Each modeling and simulation volume in the present series reviews model-
ing principles and approaches particular to specific groups of materials and de-
vices applied for chemical sensing. Volume 1: Microstructural Characterization and
Modeling of Metal Oxides covers microstructural characterization using scanning
electron microscopy (SEM), transmission electron spectroscopy (TEM), Raman
spectroscopy, in-situ high-temperature SEM, and multiscale atomistic simulation
and modeling of metal oxides, including surface state, stability, and metal oxide
interactions with gas molecules, water, and metals. Volume 2: Conductometric-
Type Sensors covers phenomenological modeling and computational design of
conductometric chemical sensors based on nanostructured materials such as
metal oxides, carbon nanotubes, and graphenes. This volume includes an over-
view of the approaches used to quantitatively evaluate characteristics of sensitive
structures in which electric charge transport depends on the interaction between
the surfaces of the structures and chemical compounds in the surroundings.
Volume 3: Solid-State Devices covers phenomenological and molecular model-
ing of processes which control sensing characteristics and parameters of various
solid-state chemical sensors, including surface acoustic wave, metal-insulator-
semiconductor (MIS), microcantilever, thermoelectric-based devices, and sensor
arrays intended for “electronic nose” design. Modeling of nanomaterials and nano-
systems that show promise for solid-state chemical sensor design is analyzed as
well. Volume 4: Optical Sensors covers approaches used for modeling and simu-
lation of various types of optical sensors such as fiber optic, surface plasmon
resonance, Fabry-Pérot interferometers, transmittance in the mid-infrared region,
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luminescence-based devices, etc. Approaches used for design and optimization
of optical systems aimed for both remote gas sensing and gas analysis cham-
bers for the nondispersive infrared (NDIR) spectral range are discussed as well.
A description of multiscale atomistic simulation of hierarchical nanostructured
materials for optical chemical sensing is also included in this volume. Volume 5:
Electrochemical Sensors covers modeling and simulation of electrochemical pro-
cesses in both solid and liquid electrolytes, including charge separation and
transport (gas diffusion, ion diffusion) in membranes, proton-electron transfers,
electrode reactions, etc. Various models used to describe electrochemical sensors
such as potentiometric, amperometric, conductometric, impedimetric, and ion-
sensitive FET sensors are discussed as well.

I believe that this series will be of interest of all who work or plan to work in
the field of chemical sensor design. The chapters in this series have been prepared
by well-known persons with high qualification in their fields and therefore should
be a significant and insightful source of valuable information for engineers and
researchers who are either entering these fields for the first time, or who are al-
ready conducting research in these areas but wish to extend their knowledge in
the field of chemical sensors and computational chemistry. This series will also be
interesting for university students, post-docs, and professors in material science,
analytical chemistry, computational chemistry, physics of semiconductor devices,

chemical engineering, etc. I believe that all of them will find useful information in
these volumes.

G. Korotcenkov
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CHAPTER 7

NoveL LoNGg-PeRIoD FIBER GRATING
SENSOR BAseD oN DuAL-PEAK
ResoNANCE AND SPR

Zhengtian Gu

1. INTRODUCTION

A long-period fiber grating (LPFG) is a kind of fiber device with photo-induced
periodic modulation of the refractive index in the core, which was first reported
in 1995 (Vengsarkar et al. 1996a). The periodicity of an LPFG is typically in the
range of 100-1000 pm. An LPFG can couple the fundamental core mode to the
co-propagating cladding modes, producing a series of discrete attenuation peaks
in the transmission spectrum. By virtue of advantages such as ease of fabrication,
low insertion loss, low-level back reflection, and compactness, LPFGs have been
used increasingly over the last few years in communications (Vengsarkar et al.
1996a, 1996b) and sensing applications (Bhatia and Vengsarkar 1996; Patrick et
al. 1998; James and Tatam 2003).

Because the field distributions and effective refractive index (ERI) of the clad-
ding modes are easily affected by the surrounding medium, LPFGs are very suit-
able for refractive index sensing (Lee et al. 1997; Tong et al. 2002; Chong et al.
2004). However, this kind of LPFG sensor is sensitive only to a surrounding me-
dium whose refractive index is less than that of the silica cladding, and in addi-
tion, it is not species-specific, which limits the extent of its applications. Recently,

DOI: 10.5643/9781606503201/ch7 227
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an LPFG chemical sensor whose cladding is coated with a sensitive thin film
has been attracting much interest and attention. N. D. Rees coated an organic-
material thin film on the cladding of an LPFG using Langmuir-Blodgett technique,
and studied the influence of the thickness of the overlay material on the LPFG
response (Nicholas et al. 2002). Ignacio et al. (2005, 2006), Wang et al. (2005),
and Cusano et al. (2006) studied the resonance shift and the mode transition in
high-refractive-index-coated long-period gratings. The theoretical analysis as well
as experimental data suggest that the sensitivity of LPFG-based chemical/biosen-
sors can be improved by appropriate choice of the cladding mode order, the film
thickness, and the refractive index, and there is an optimum overlay thickness for
each combination of ambient and overlay refractive indices. Based on this coated
LPFG structure, Pilla et al. (2005), Gu et al. (2006), and Jesus et al. (2007) de-
signed optical chemo-, gas-, and pH sensors. The coated LPFG sensors overcome
the limitation of noncoated LPFGs that the refractive index of the external me-
dium must be less than or equal to that of the cladding, and has the advantages
of specification of chemical analyte and broad response range.

In 1999, Shu et al. (1999) found that when the grating period of an LPFG was
short (~100 pum), dual resonance peaks of the higher cladding mode appeared
during the writing process of the LPFG. They also found that the dual resonance
wavelengths shifted in opposite directions with variation of the environmental
refractive index. Based on this dual peak effect, Shu and Huang (1999) fabricated
a kind of high-sensitivity liquid concentration sensor, for which the sensitivity of
the LP,,; cladding mode is 20 times higher than that of the scheme with conven-
tional grating period (400 um). If the dual-peak resonance effect is utilized in an
LPFG coated with a sensitive thin film, the LPFG not only has high sensitivity to
refractive index, due to dual peak resonance, but also enlarges the sensing appli-
cation range which can be applied in monitoring the solution concentration, gas
concentration, and so on. When this kind of LPFG is brought into contact with
the external surroundings, the change of refractive index of the thin film leads
to variation of the interval between the dual resonance peaks. This coated LPFG
based on dual peak resonance is first discussed in this chapter.

Surface plasmon resonance (SPR) is one of the promising optical techniques
with potential applications in various fields (Flavio et al. 2005; Chen et al. 2005;
Wang and Knoll 2006; Shin et al. 2007). SPR sensors have advantages such as
flexibility, low cost, and small size (Lotierzo et al. 2004; Gupta and Sharma 2005).
The principle of SPR sensors is that the surface plasmon wave (SPW), which can
be excited at the interface between a metal film and an absorbing medium, is
extremely sensitive to tiny changes in the refractive index (RI) of the absorbing
medium. SPR sensors have been developed into three types: prism-coupled, inte-
grated optical waveguide-coupled, and optical fiber-coupled sensors (Dostalek et
al. 2001; Ho et al. 2001; Cao et al. 2006). In recent years, considerable attention
has focused on SPR sensors based on metal-coated LPFGs, which are extremely



