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Preface

This book provides an introduction to the ideas and methods of linear func-
tional analysis at a level appropriate to the final year of an undergraduate
course at a British university. The prerequisites for reading it are a standard
undergraduate knowledge of linear algebra and real analysis (including the the-
ory of metric spaces).

Part of the development of functional analysis can be traced to attempts
to find a suitable framework in which to discuss differential and integral equa-
tions. Often, the appropriate setting turned out to be a vector space of real
or complex-valued functions defined on some set. In general, such a vector
space is infinite-dimensional. This leads to difficulties in that, although many
of the elementary properties of finite-dimensional vector spaces hold in infinite-
dimensional vector spaces, many others do not. For example, in general infinite-
dimensional vector spaces there is no framework in which to make sense of an-
alytic concepts such as convergence and continuity. Nevertheless, on the spaces
of most interest to us there is often a norm (which extends the idea of the
length of a vector to a somewhat more abstract setting). Since a norm on a
vector space gives rise to a metric on the space, it is now possible to do analysis
in the space. As real or complex-valued functions are often called functionals,
the term functional analysis came to be used for this topic.

We now briefly outline the contents of the book. In Chapter 1 we present
(for reference and to establish our notation) various basic ideas that will be
required throughout the book. Specifically, we discuss the results from elemen-
tary linear algebra and the basic theory of metric spaces which will be required
in later chapters. We also give a brief summary of the elements of the theory
of Lebesgue measure and integration. Of the three topics discussed in this in-
troductory chapter, Lebesgue integration is undoubtedly the most technically
difficult and the one which the prospective reader is least likely to have encoun-
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tered before. Unfortunately, many of the most important spaces which arise in
functional analysis are spaces of integrable functions, and it is necessary to use
the Lebesgue integral to overcome various drawbacks of the elementary Rie-
mann integral, commonly taught in real analysis courses. The reader who has
not met Lebesgue integration before can still read this book by accepting that
an integration process exists which coincides with the Riemann integral when
this is defined, but extends to a larger class of functions, and which has the
properties described in Section 1.3.

In Chapter 2 we discuss the fundamental concept of functional analysis, the
normed vector space. As mentioned above, a norm on a vector space is simply an
extension of the idea of the length of a vector to a rather more abstract setting.
Via an associated metric, the norm is behind all the discussion of convergence
and continuity in vector spaces in this book. The basic properties of normed
vector spaces are described in this chapter. In particular we begin the study of
Banach spaces which are complete normed vector spaces.

In finite dimensions, in addition to the length of a vector, the angle between
two vectors is also used. To extend this to more abstract spaces the idea of
an inner product on a vector space is introduced. This generalizes the well-
known “dot product” used in R3. Inner product spaces, which are vector spaces
possessing an inner product, are discussed in Chapter 3. Every inner product
space is a normed space and, as in Chapter 2, we find that the most important
inner product spaces are those which are complete. These are called Hilbert
spaces.

Having discussed various properties of infinite-dimensional vector spaces
the next step is to look at linear transformations between these spaces. The
most important linear transformations are the continuous ones, and these will
be called linear operators. In Chapter 4 we describe general properties of linear
operators between normed vector spaces. Any linear transformation between
finite-dimensional vector spaces is automatically continuous so questions relat-
ing to the continuity of the transformation can safely be ignored (and usually
are). However, when the spaces are infinite-dimensional this is certainly not
the case and the continuity, or otherwise, of individual linear transformations
must be studied much more carefully. In addition, we investigate the algebraic
properties of the entire set of all linear operators between given normed vector
spaces. Finally, for some linear operators it is possible to define an inverse op-
erator, and we conclude the chapter with a characterization of the invertibility
of an operator. '

In Chapter 5 we specialize the discussion of linear operators to those acting
between Hilbert spaces. The additional structure of these spaces means that
we can define the adjoint of a linear operator and hence the particular classes
of self-adjoint and unitary operators which have especially nice properties. We
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also introduce the spectrum of linear operators acting on a Hilbert space. The
spectrum of a linear operator is a generalization of the set of eigenvalues of a
matrix, which is a well-known concept in finite-dimensional linear algebra.

As we have already remarked, there are many significant differences between
the theory of linear transformations in finite and infinite dimensions. However,
for the class of compact operators a great deal of the theory carries over from
finite to infinite. dimensions. The properties of these particular operators are
discussed in detail in Chapter 6. In particular, we study compact, self-adjoint
operators on Hilbert spaces, and their spectral properties.

Finally, in Chapter 7, we use the results of the preceding chapters to discuss
two extremely important areas of application of functional analysis, namely
integral and differential equations. As we remarked above, the study of these
equations was one of the main early influences and driving forces in the growth
and development of functional analysis, so it forms a fitting conclusion to this
book. Nowadays, functional analysis has applications to a vast range of areas
of mathematics, but limitations of space preclude us from studying further
applications.

A large number of exercises are included, together with complete solutions.
Many of these exercises are relatively simple, while some are considerably less
so. It is strongly recommended that the student should at least attempt most
of these questions before looking at the solution. This is the only way to really
learn any branch of mathematics.

There is a World Wide Web site associated with this book, at the URL

http://www.ma.hw.ac.uk/ bryan/lfa_book.html

This site contains links to sites on the Web which give some historical back-
ground to the subject, and also contains a list of any significant misprints which
have been found in the book.
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Preliminaries

To a certain extent, functional analysis can be described as infinite-dimensional
linear algebra combined with analysis, in order to make sense of ideas such as
convergence and continuity. It follows that we will make extensive use of these
topics, so in this chapter we briefly recall and summarize the various ideas and
results which are fundamental to the study of functional analysis. We must
stress, however, that this chapter only attempts to review the material and
establish the notation that we will use. We do not attempt to motivate or
explain this material, and any reader who has not met this material before
should consult an appropriate textbook for more information.

Section 1.1 discusses the basic results from linear algebra that will be re-
quired. The material here is quite standard although, in general, we do not
make any assumptions about finite-dimensionality except where absolutely nec-
essary. Section 1.2 discusses the basic ideas of metric spaces. Metric spaces are
the appropriate setting in which to discuss basic analytical concepts such as
convergence of sequences and continuity of functions. The ideas are a natural
extension of the usual concepts encountered in elementary courses in real anal-
ysis. In general metric spaces no other structure is imposed beyond a metric,
which is used to discuss convergence and continuity. However, the essence of
functional analysis is to consider vector spaces (usually infinite-dimensional)
which are metric spaces and to study the interplay between the algebraic and
metric structures of the spaces, especially when the spaces are complete metric
spaces.

An important technical tool in the theory is Lebesgue integration. This is
because many important vector spaces consist of sets of integrable functions.

1
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In order for desirable metric space properties, such as completeness, to hold
in these spaces it is necessary to use Lebesgue integration rather than the
simpler Riemann integration usually discussed in elementary analysis courses.
Of the three topics discussed in this introductory chapter, Lebesgue integration
is undoubtedly the most technically difficult and the one which the prospective
student is most likely to have not encountered before. In this book we will avoid
arcane details of Lebesgue integration theory. The basic results which will be
needed are described in Section 1.3, without any proofs. For the reader who is
unfamiliar with Lebesgue integration and who does not wish to embark on a
prolonged study of the theory, it will be sufficient to accept that an integration
process exists which applies to a broad class of “Lebesgue integrable” functions
and has the properties described in Section 1.3, most of which are obvious
extensions of corresponding properties of the Riemann integral.

1.1 Linear Algebra

Throughout the book we have attempted to use standard mathematical nota-

tion wherever possible. Basic to the discussion is standard set theoretic notation

and terminology. Details are given in, for example, [7]. Sets will usually be de-

noted by upper case letters, X, Y, ..., while elements of sets will be denoted by

lower case letters, z, y,.... The usual set theoretic operations will be used: €,

C, U, N, @ (the empty set), x (Cartesian product), X \Y ={z€e X :z ¢ Y}.
The following standard sets will be used,

R = the set of real numbers,
C = the set of complex numbers,
N = the set of positive integers {1, 2, ...}.

The sets R and C are algebraic fields. These fields will occur throughout the
discussion, associated with vector spaces. Sometimes it will be crucial to be
specific about which of these fields we are using, but when the discussion applies
equally well to both we will simply use the notation F to denote either set. The
real and imaginary parts of a complex number z will be denoted by Re 2z and
S'm z respectively, while the complex conjugate will be denoted z.

For any k € N we let F* = Fx...xF (the Cartesian product of k copies of F).
Elements of F* will written in the form z = (®1,-- o m), 2 €K, 5=1,...,k

For any two sets X and Y, the notation f : X — Y will denote a function or
mapping from X into Y. The set X is the domain of f and Y is the codomain.
If AC X and B C Y, we use the notation

f(A)={f(z):z€ A}, fY(B)={reX:f(z)e B).
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If Z is a third set and g : Y — Z is another function, we define the composition
of g and f, written gof : X — Z, by

(gof)(z) = g(f(z)),

for all z € X.
We now discuss the essential concepts from linear algebra that will be re-

quired in later chapters. Most of this section should be familiar, at least in the
finite-dimensional setting, see for example [1] or (5], or any other book on linear
algebra. However, we do not assume here that any spaces are finite-dimensional

unless explicitly stated.

Definition 1.1

A wvector space over IF is a non-empty set V' together with two functions, one
from V x V to V and the other from F x V to V, denoted by = + y and az
respectively, for all z, y € V and «a € F, such that, for any a, # € F and any

.y, zeV,

(@) z+y=y+z, z+@y+2)=(z+y)+7

(b) there exists a unique 0 € V' (independent of z) such that z + 0 = z;
(c) there exists a unique —z € V such that z + (—z) = 0;

(d) 1Iz=2z, a(fz)=(af)z;

(e) a(z+y)=ax+ay, (a+pB)r=az+ fz.

If F = R (respectively, F = C) then V is a real (respectively, complezx) vector
space. Elements of F are called scalars, while elements of V are called vectors.
The operation z + y is called vector addition, while the operation az is called

scalar multiplication.

Many results about vector spaces apply equally well to both real or complex
vector spaces so if the type of a space is not stated explicitly then the space
may be of either type, and we will simply use the term “vector space”.

If V is a vector space with z € V and A, B C V, we use the notation,

z+A={r+a:ac€ A},

A+B={a+b:a€ A, be B}.

Definition 1.2

Let V be a vector space. A non-empty set U C V is a linear subspace of V if U
is itself a vector space (with the same vector addition and scalar multiplication
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as in V). This is equivalent to the condition that

ar+PByeU, foralla,f€Fand z,yeU
(which is called the subspace test).

Note that, by definition, vector spaces and linear subspaces are always non-
empty, while general subsets of vector spaces which are not subspaces may be
empty. In particular, it is a consequence of the vector space definitions that
0z = 0, for all z € V (here, 0 is the scalar zero and 0 is the vector zero; except
where it is important to distinguish between the two, both will be denoted by
0). Hence, any linear subspace U C V must contain at least the vector 0, and

the set {0} C V is a linear subspace.

Definition 1.3

Let V be a vector space, let v = {v;,...,v} C V, k > 1, be a finite set and
let A C V be an arbitrary non-empty set.

(a) A linear combination of the elements of v is any vector of the form

T=aV1 + ... +ogvgp €V, (1.1)

for any set of scalars ay, ..., ak.

(b) v is linearly independent if the following implication holds:

a1+ ...+ =0 = a=...=a=0.

(c) A is linearly independent if every finite subset of A is linearly independent.
If A is not linearly independent then it is linearly dependent.

(d) The span of A (denoted Sp A) is the set of all linear combinations of all
finite subsets of A. This set is a linear subspace of V. Equivalently, Sp A
is the intersection of the set of all linear subspaces of V' which contain A.
Thus, Sp A is the smallest linear subspace of V' containing A (in the sense
that if A C B C V and B is a linear subspace of V then Sp A C B).

(e) If v is linearly independent and Spv = V, then v is called a basis for
V. It can be shown that if V' has such a (finite) basis then all bases of
V have the same number of elements. If this number is k then V is said
to be k-dimensional (or, more 5enerally, finite-dimensional), and we write
dimV = k. If V does not have such a finite basis it is said to be infinite-
dimensional.



1. Preliminaries

(f) If v is a basis for V' then any z € V' can be written as a linear combination
of the form (1.1), with a unique set of scalars a;, j = 1,.. ., k. These scalars
(which clearly depend on z) are called the components of x with respect to

the basis v.

(g) The set F* is a vector space over F and the set of vectors
a =(1,0,0,...,0), & =(0,1,0,...,0),..., & = (0,0,0,...,1),
is a basis for F*. This notation will be used throughout the book, and this

basis will be called the standard basis for F*.

We will sometimes write dim V' = oo when V is infinite-dimensional. How-
ever, this is simply a notational convenience, and should not be interpreted in
the sense of ordinal or cardinal numbers (see [7]). In a sense, infinite-dimensional
spaces can vary greatly in their “size”; see Section 3.4 for some further discus-

sion of this.

Definition 1.4

Let V, W be vector spaces over F. The Cartesian product V x W is a vec-
tor space with the following vector space operations. For any a € F and any
(zj,y;) EVXW,j=1,2 let

(z1,3) + (z2,92) = (z1 + 22,11 + 22), a(z1,41) = (azy,ay;)

(using the corresponding vector space operations in V and W).

We next describe a typical construction of vector spaces consisting of func-
tions defined on some underlying set.

Definition 1.5

Let S be a set and let V be a vector space over F. We denote the set of
functions f : § — V by F(S,V). For any a € F and any f, g € F(S,V), we
define functions f + g and af in F(S,V) by

(f +9)(z) = f(z) + 9(z), (af)(z)=af(z),

for all z € S (using the vector space operations in V). With these definitions
the set F'(S, V) is a vector space over F.

Many of the vector spaces used in functional analysis are of the above
form. From now on, whenever functions are added or multiplied by a scalar the
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process will be as in Definition 1.5. We note that the zero element in F(S,V)
is the function which is identically equal to the zero element of V. Also, if
S contains infinitely many elements and V # {0} then F(S,V) is infinite-

dimensional.

Example 1.6

If S is the set of integers {1,...,k} then the set F(S,F) can be identified with
the space F* (by identifying an element z € F* with the function f € F(S,F)

defined by f(j) = zj, 1 < j < k).

Often, in the construction in Definition 1.5, the set S is a vector space and
only a subset of the set of all functions f : § — V is considered. In particular,
in this case the most important functions to consider are those which preserve
the linear structure of the vector spaces in the sense of the following definition.

Definition 1.7

Let V, W be vector spaces over the same scalar field F. A functionT : V — W
is called a linear transformation (or mapping) if, for alla, € Fand z, y € V,

T(az + By) = aT'(z) + BT (y).

The set of all linear transformations T': V — W will be denoted by L(V, W).
With the scalar multiplication and vector addition defined in Definition 1.5 the
set L(V,W) is a vector space (it is a subspace of F(V,W)). When V = W we
abbreviate L(V, V) to L(V).

A particularly simple linear transformation in L(V) is defined by Iy (z) = z,
for z € V. This is called the identity transformation on V' (usually we use the
notation [ if it is clear what space the transformation is acting on).

Whenever we discuss linear transformations T : V' — W it will be taken for
granted, without being explicitly stated, that V' and W are vector spaces over
the same scalar field.

Since linear transformations are functions they can be composed (when they
act on appropriate spaces). The following lemmas are immediate consequences
of the definition of a linear transformation.

Lemma 1.8

Let V, W, X be vector spaces and T € L(V,W), § € L(W, X). Then the
composition SoT € L(V, X).
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Lemma 1.9

Let V be a vector space, R, S, T € L(V), and a € F. Then:

(a) Ro(SoT) = (RoS)eT;

(b) Ro(S+T) = RoS + RoT;

(c) (S+T)oR=SoR+ToR,

(d) Iy oT =Toly =T;

(e) (a8)oT = a(S§0°T) = So(aT).

These properties also hold for linear transformations between different spaces

when the relevant operations make sense (for instance, (a) holds when T €
L(V,W), S € L(W,X) and R € L(X,Y), for vector spaces V, W, X, Y).

The five properties listed in Lemma 1.9 are exactly the extra axioms which
a vector space must satisfy in order to be an algebra. Since this is the only
example of an algebra which we will meet in this book we will not discuss this
further, but we note that an algebra is both a vector space and a ring, see [5].

When dealing with the composition of linear transformations S, T it is
conventional to omit the symbol o and simply write ST. Eventually we will do
this, but for now we retain the symbol o.

The following lemma gives some further elementary properties of linear

transformations.

Lemma 1.10
Let V, W be vector spaces and T € L(V, W).
(a) T(0) = 0.

(b) If U is a linear subspace of V then the set T'(U) is a linear subspace of W
and dimT(U) < dim U (as either finite numbers or co).

(c) If U is a linear subspace of W then the set {z € V : T'(z) € U} is a linear
subspace of V.

We can now state some standard terminology.

Definition 1.11

Let V, W be vector spaces and T' € L(V, W).

(a) The image of T' (often known as the range of T) is the subspace InT' =
T(V); the rank of T is the number r(T) = dim(ImT).
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(b) The kernelof T (often known as the null-space of T') is the subspace Ker T =
{z € V : T(z) = 0}; the nullity of T is the number (T) = dim(Ker T').

The rank and nullity, 7(T"), n(T"), may have the value co.

(c¢) T has finite rank if r(T) is finite.

(d) T is one-to-one if, for any y € W, the equation T'(z) = y has at mos*, one
solution z.

(e) T is onto if, for any y € W, the equation T(z) = y has at least one
solution z.

(f) T is bijective if, for any y € W, the equation T(xr) = y has exactly one
solution z (that is, T is both one-to-one and onto).

Lemma 1.12
Let V, W be vector spaces and T € L(V,W).

(a) T is one-to-one if and only if the equation T'(z) = 0 has only the solution
z = 0. This is equivalent to KerT = {0} or n(T) = 0.

(b) T is onto if and only if InT = W. If dim W is finite this is equivalent to
r(T) =dimW.

(¢) T € L(V,W) is bijective if and only if there exists a transformation S €
L(W, V) which is bijective and SoT = Iy and T oS = Iw.

If V is k-dimensional then
n(T)+r(T)=k

(in particular, 7(T) is necessarily finite, irrespective of whether W is finite-
dimensional). Hence, if W is also k-dimensional then T is bijective if and only

if n(T) = 0.

Related to the bijectivity, or otherwise, of a transformation T" from a space
to itself we have the following definition, which will be extremely important
later.

Definition 1.13

Let V be a vector space and T € L(V). A scalar A € F is an eigenvalue of
T if the equation T'(x) = Az has a non-zero solution z € V, and any such
non-zero solution is an eigenvector. The subspace Ker (T — AI) C V is called
the eigenspace (corresponding to A\) and the multiplicity of A is the number
my = n(T — AI).
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Lemma 1.14

Let V be a vector space and let T € L(V). Let {Ay,..., Az} be a set of distinct
eigenvalues of T', and for each 1 < j < k let z; be an eigenvector corresponding

to A;. Then the set {zy,...,zx} is linearly independent.

Linear transformations between finite-dimensional vector spaces are closely
related to matrices. For any integers m, n > 1, let M, (F) denote the set of all
m X n matrices with entries in F. A typical element of M,,,(F) will be written
as [ai;] (or [aij]mn if it is necessary to emphasize the size of the matrix). Any
matrix C = [ci;] € Mma(F) induces a linear transformation Tc € L(F",F™) as
follows: for any z € F™, let Tcx = y, where y € F™ is defined by

n
(TR — Zc,-jzj, 1<i<m.
j=1
Note that, if we were to regard z and y as column vectors then this trans-
formation corresponds to standard matrix multiplication. However, mainly for
notational purposes, it is generally convenient to regard elements of F* as row
vectors. This convention will always be used below, except when we specifically
wish to perform computations of matrices acting on vectors, and then it will
be convenient to use column vector notation.

On the other hand, if U and V are finite-dimensional vector spaces then a
linear transformation T" € L(U, V') can be represented in terms of a matrix. To
fix our notation we briefly review this representation (see Chapter 7 of [1] for
further details). Suppose that U is n-dimensional and V' is m-dimensional, with
bases u = {u;,...,un} and v = {v,...,vn} respectively. Any vector a € U
can be represented in the form

n
a= E Clj‘llj,

i=1
for a unique collection of scalars ay,...,a,. We define the column matrix
ay
A = . € Mnl(F).
Op

The mapping a — A is a bijective linear transformation from U to M,,(F),
that is, there is a one-to-one correspondence between vectors a € U and column
matrices A € M,1(F). There is a similar correspondence between vectors b € V
and column matrices B € M, (F). Now, for any 1 < j < n, the vector Tu;

has the representation
m
Tu,- = E Tij Vi,

i=1



