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Preface

Python is easy to learn. You’re probably here because now that your code runs correctly,
you need it to run faster. You like the fact that your code is easy to modify and you can
iterate with ideas quickly. The trade-off between easy to develop and runs as quickly as
I need is a well-understood and often-bemoaned phenomenon. There are solutions.

Some people have serial processes that have to run faster. Others have problems that
could take advantage of multicore architectures, clusters, or graphics processing units.
Some need scalable systems that can process more or less as expediency and funds allow,
without losing reliability. Others will realize that their coding techniques, often bor-
rowed from other languages, perhaps aren’t as natural as examples they see from others.

In this book we will cover all of these topics, giving practical guidance for understanding
bottlenecks and producing faster and more scalable solutions. We also include some
war stories from those who went ahead of you, who took the knocks so you don’t
have to.

Python is well suited for rapid development, production deployments, and scalable
systems. The ecosystem is full of people who are working to make it scale on your behalf,
leaving you more time to focus on the more challenging tasks around you.

Who This Book Is For

You've used Python for long enough to have an idea about why certain things are slow
and to have seen technologies like Cython, numpy, and PyPy being discussed as possible
solutions. You might also have programmed with other languages and so know that
there’s more than one way to solve a performance problem.

While this book is primarily aimed at people with CPU-bound problems, we also look
at data transfer and memory-bound solutions. Typically these problems are faced by
scientists, engineers, quants, and academics.




We also look at problems that a web developer might face, including the movement of
data and the use of just-in-time (JIT) compilers like PyPy for easy-win performance
gains.

It might help if you have a background in C (or C++, or maybe Java), but it isn’t a pre-
requisite. Python’s most common interpreter (CPython—the standard you normally
get ifyou type python atthe command line) is written in C, and so the hooks and libraries
all expose the gory inner C machinery. There are lots of other techniques that we cover
that don’t assume any knowledge of C.

You might also have a lower-level knowledge of the CPU, memory architecture, and
data buses, but again, that’s not strictly necessary.

Who This Book Is Not For

This book is meant for intermediate to advanced Python programmers. Motivated nov-
ice Python programmers may be able to follow along as well, but we recommend having
a solid Python foundation.

We don’t cover storage-system optimization. If you have a SQL or NoSQL bottleneck,
then this book probably won’t help you.

What You'll Learn

Your authors have been working with large volumes of data, a requirement for I want
the answers faster! and a need for scalable architectures, for many years in both industry
and academia. We’ll try to impart our hard-won experience to save you from making
the mistakes that we’ve made.

At the start of each chapter, we’ll list questions that the following text should answer (if
it doesn’t, tell us and we’ll fix it in the next revision!).

We cover the following topics:

« Background on the machinery of a computer so you know what’s happening behind
the scenes

o Lists and tuples—the subtle semantic and speed differences in these fundamental
data structures

« Dictionaries and sets—memory allocation strategies and access algorithms in these
important data structures

» Iterators—how to write in a more Pythonic way and open the door to infinite data
streams using iteration

» Pure Python approaches—how to use Python and its modules effectively
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¢ Matrices with numpy—how to use the beloved numpy library like a beast

+ Compilation and just-in-time computing—processing faster by compiling down to
machine code, making sure youre guided by the results of profiling

+ Concurrency—ways to move data efficiently

« multiprocessing—the various ways to use the built-in multiprocessing library
for parallel computing, efficiently share numpy matrices, and some costs and benefits
of interprocess communication (IPC)

o Cluster computing—convert your multiprocessing code to run on a local or re-
mote cluster for both research and production systems

o Using less RAM —approaches to solving large problems without buying a humun-
gous computer

o Lessons from the field—lessons encoded in war stories from those who took the
blows so you don’t have to

Python 2.7

Python 2.7 is the dominant version of Python for scientific and engineering computing.
64-bit is dominant in this field, along with *nix environments (often Linux or Mac). 64-
bit lets you address larger amounts of RAM. *nix lets you build applications that can be
deployed and configured in well-understood ways with well-understood behaviors.

If you're a Windows user, then you’ll have to buckle up. Most of what we show will work
just fine, but some things are OS-specific, and you’ll have to research a Windows solu-
tion. The biggest difficulty a Windows user might face is the installation of modules:
research in sites like StackOverflow should give you the solutions you need. If you're
on Windows, then having a virtual machine (e.g., using VirtualBox) with a running
Linux installation might help you to experiment more freely.

Windows users should definitely look ata packaged solution like those available through
Anaconda, Canopy, Python(x,y), or Sage. These same distributions will make the lives
of Linux and Mac users far simpler too.

Moving to Python 3

Python 3 is the future of Python, and everyone is moving toward it. Python 2.7 will
nonetheless be around for many years to come (some installations still use Python 2.4
from 2004); its retirement date has been set at 2020.

The shift to Python 3.3+ has caused enough headaches for library developers that people
have been slow to port their code (with good reason), and therefore people have been
slow to adopt Python 3. This is mainly due to the complexities of switching from a mix

Preface | xi



of string and Unicode datatypes in complicated applications to the Unicode and byte
implementation in Python 3.

Typically, when you want reproducible results based on a set of trusted libraries, you
don’t want to be at the bleeding edge. High performance Python developers are likely
to be using and trusting Python 2.7 for years to come.

Most of the code in this book will run with little alteration for Python 3.3+ (the most
significant change will be with print turning from a statement into a function). In a
few places we specifically look at improvements that Python 3.3+ provides. One item
that might catch you out is the fact that / means integer division in Python 2.7, but it
becomes float division in Python 3. Of course—being a good developer, your well-
constructed unit test suite will already be testing your important code paths, so you’ll
be alerted by your unit tests if this needs to be addressed in your code.

scipy and numpy have been Python 3-compatible since late 2010. matplotlib was
compatible from 2012, scikit-learn was compatible in 2013, and NLTK is expected to
be compatible in 2014. Django has been compatible since 2013. The transition notes for
each are available in their repositories and newsgroups; it is worth reviewing the pro-
cesses they used if youre going to migrate older code to Python 3.

We encourage you to experiment with Python 3.3+ for new projects, but to be cautious
with libraries that have only recently been ported and have few users—you’ll have a
harder time tracking down bugs. It would be wise to make your code Python 3.3+-
compatible (learn about the __future__ imports), so a future upgrade will be easier.

Two good guides are “Porting Python 2 Code to Python 3” (http://bit.ly/pyporting) and
“Porting to Python 3: An in-depth guide.” (http.//python3porting.com/) With a distri-
bution like Anaconda or Canopy, you can run both Python 2 and Python 3 simultane-
ously—this will simplify your porting.

License

This book is licensed under Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 (http://bit.ly/CC_A-NC-ND3).

Youre welcome to use this book for noncommercial purposes, including for
noncommercial teaching. The license only allows for complete reproductions; for par-
tial reproductions, please contact O’Reilly (see “How to Contact Us” on page xv). Please
attribute the book as noted in the following section.

We negotiated that the book should have a Creative Commons license so the contents
could spread further around the world. We’d be quite happy to receive a beer if this
decision has helped you. We suspect that the O’Reilly staff would feel similarly about
the beer.

xii | Preface



How to Make an Attribution

The Creative Commons license requires that you attribute your use of a part of this
book. Attribution just means that you should write something that someone else can
follow to find this book. The following would be sensible: “High Performance Python
by Micha Gorelick and Ian Ozsvald (O’Reilly). Copyright 2014 Micha Gorelick and Ian
Ozsvald, 978-1-449-36159-4”

Errata and Feedback

We encourage you to review this book on public sites like Amazon—please help others
understand if they’d benefit from this book! You can also email us at feedback@highper
formancepython.com.

We're particularly keen to hear about errors in the book, successful use cases where the
book has helped you, and high performance techniques that we should cover in the next
edition. You can access the page for this book at http://bit.ly/High_Performance_Python.

Complaints are welcomed through the instant-complaint-transmission-service
> [dev/null.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to commands,
modules, and program elements such as variable or function names, databases,
datatypes, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a question or exercise.
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This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at

https://github.com/mynameisfiber/high_performance_python.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless youre reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

Ifyou feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that
{ . delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
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Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http.//www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1
Understanding Performant Python

Questions You'll Be Able to Answer After This Chapter

o What are the elements of a computer’s architecture?

o What are some common alternate computer architectures?

« How does Python abstract the underlying computer architecture?
o What are some of the hurdles to making performant Python code?

» What are the different types of performance problems?

Programming computers can be thought of as moving bits of data and transforming
them in special ways in order to achieve a particular result. However, these actions have
a time cost. Consequently, high performance programming can be thought of as the act
of minimizing these operations by either reducing the overhead (i.e., writing more ef-
ficient code) or by changing the way that we do these operations in order to make each
one more meaningful (i.e., finding a more suitable algorithm).

Let’s focus on reducing the overhead in code in order to gain more insight into the actual
hardware on which we are moving these bits. This may seem like a futile exercise, since
Python works quite hard to abstract away direct interactions with the hardware. How-
ever, by understanding both the best way that bits can be moved in the real hardware
and the ways that Python’s abstractions force your bits to move, you can make progress
toward writing high performance programs in Python.

The Fundamental Computer System

The underlying components that make up a computer can be simplified into three basic
parts: the computing units, the memory units, and the connections between them. In




addition, each of these units has different properties that we can use to understand them.
The computational unit has the property of how many computations it can do per
second, the memory unit has the properties of how much data it can hold and how fast
we can read from and write to it, and finally the connections have the property of how
fast they can move data from one place to another.

Using these building blocks, we can talk about a standard workstation at multiple levels
of sophistication. For example, the standard workstation can be thought of as having a
central processing unit (CPU) as the computational unit, connected to both the random
access memory (RAM) and the hard drive as two separate memory units (each having
different capacities and read/write speeds), and finally a bus that provides the connec-
tions between all of these parts. However, we can also go into more detail and see that
the CPU itself has several memory units in it: the L1, L2, and sometimes even the L3
and L4 cache, which have small capacities but very fast speeds (from several kilobytes
to a dozen megabytes). These extra memory units are connected to the CPU with a
special bus called the backside bus. Furthermore, new computer architectures generally
come with new configurations (for example, Intel’s Nehalem CPUs replaced the front-
side bus with the Intel QuickPath Interconnect and restructured many connections).
Finally, in both of these approximations of a workstation we have neglected the network
connection, which is effectively a very slow connection to potentially many other com-
puting and memory units!

To help untangle these various intricacies, let's go over a brief description of these fun-
damental blocks.

Computing Units

The computing unit of a computer is the centerpiece of its usefulness—it provides the
ability to transform any bits it receives into other bits or to change the state of the current
process. CPUs are the most commonly used computing unit; however, graphics
processing units (GPUs), which were originally typically used to speed up computer
graphics but are becoming more applicable for numerical applications, are gaining
popularity due to their intrinsically parallel nature, which allows many calculations to
happen simultaneously. Regardless of its type, a computing unit takes in a series of bits
(for example, bits representing numbers) and outputs another set of bits (for example,
representing the sum of those numbers). In addition to the basic arithmetic operations
on integers and real numbers and bitwise operations on binary numbers, some com-
puting units also provide very specialized operations, such as the “fused multiply add”
operation, which takes in three numbers, A,B,C, and returns the value A * B + C.

The main properties of interest in a computing unit are the number of operations it can
do in one cycle and how many cycles it can do in one second. The first value is measured
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