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Preface

For most students, the first and often only course in college mathematics
is calculus. It is true that calculus is the single most important field of
mathematics, whose emergence in the seventeenth century signaled the
birth of modern mathematics and was the key to the successful applications
of mathematics in the sciences and engineering.

But calculus (or analysis) is also very technical. It takes a lot of work
even to introduce its fundamental notions like continuity and the derivative
(after all, it took two centuries just to develop the proper definition of these
notions). To get a feeling for the power of its methods, say by describing
one of its important applications in detail, takes years of study.

If you want to become a mathematician, computer scientist, or engineer,
this investment is necessary. But if your goal is to develop a feeling for what
mathematics is all about, where mathematical methods can be helpful, and
what kinds of questions do mathematicians work on, you may want to look
for the answer in some other fields of mathematics.

There are many success stories of applied mathematics outside calculus.
A recent hot topic is mathematical cryptography, which is based on number
theory (the study of the positive integers 1, 2, 3, ...), and is widely applied,
for example, in computer security and electronic banking. Other important
areas in applied mathematics are linear programming, coding theory, and
the theory of computing. The mathematical content in these applications
is collectively called discrete mathematics. (The word “discrete” is used in
the sense of “separated from each other,” the opposite of “continuous;” it is
also often used in the more restrictive sense of “finite.” The more everyday
version of this word, meaning “circumspect,” is spelled “discreet.”)



Preface

The aim of this book is not to cover “discrete mathematics” in depth
(it should be clear from the description above that such a task would be
ill-defined and impossible anyway). Rather, we discuss a number of selected
results and methods, mostly from the areas of combinatorics and graph the-
ory, with a little elementary number theory, probability, and combinatorial
geometry.

It is important to realize that there is no mathematics without proofs.
Merely stating the facts, without saying something about why these facts
are valid, would be terribly far from the spirit of mathematics and would
make it impossible to give any idea about how it works. Thus, wherever
possible, we will give the proofs of the theorems we state. Sometimes this
is not possible: quite simple, elementary facts can be extremely difficult to
prove, and some such proofs may take advanced courses to go through. In
these cases, we will at least state that the proof is highly technical and goes
beyond the scope of this book.

Another important ingredient of mathematics is problem solving. You
won’t be able to learn any mathematics without dirtying your hands and
trying out the ideas you learn about in the solution of problems. To some,
this may sound frightening, but in fact, most people pursue this type of
activity almost every day: Everybody who plays a game of chess or solves
a puzzle is solving discrete mathematical problems. The reader is strongly
advised to answer the questions posed in the text and to go through the
problems at the end of each chapter of this book. Treat it as puzzle solving,
and if you find that some idea that you came up with in the solution plays
some role later, be satisfied that you are beginning to get the essence of
how mathematics develops.

We hope that we can illustrate that mathematics is a building, where
results are built on earlier results, often going back to the great Greek
mathematicians: that mathematics is alive, with more new ideas and more
pressing unsolved problems than ever: and that mathematics is also an art,
where the beauty of ideas and methods is as important as their difficulty
or applicability.

Laszl6 Lovasz J6zsef Pelikan Katalin Vesztergombi
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1
Let’s Count!

1.1 A Party

Alice invites six guests to her birthday party: Bob, Carl, Diane, Eve, Frank,
and George. When they arrive, they shake hands with each other (strange
European custom). This group is strange anyway, because one of them asks,
“How many handshakes does this mean?”

“I shook 6 hands altogether,” says Bob, “and I guess, so did everybody
else.”

“Since there are seven of us, this should mean 7 - 6 = 42 handshakes,”
ventures Carl.

“This seems too many” says Diane. “The same logic gives 2 handshakes
if two persons meet, which is clearly wrong.”

“This is exactly the point: Every handshake was counted twice. We have
to divide 42 by 2 to get the right number: 21,” with which Eve settles the
issue.

When they go to the table, they have a difference of opinion about who
should sit where. To resolve this issue, Alice suggests, “Let’s change the
seating every half hour, until we get every seating.”

“But you stay at the head of the table,” says George, “since it is your
birthday.”

How long is this party going to last? How many different seatings are
there (with Alice’s place fixed)?

Let us fill the seats one by one, starting with the chair on Alice’s right.
Here we can put any of the 6 guests. Now look at the second chair. If Bob



2 1. Let's Count!

sits in the first chair. we can put any of the remaining 5 guests in the second
chair: if Carl sits in the first chair. we again have 5 choices for the second
chair. ete. Each of the six choices for the first chair gives us five choices
for the second chair. so the number of ways to fill the first two chairs is
545405+0+5+0H==06-5=30. Similarly. no matter how we fill the first
two chairs. we have | choices for the thivd chair. which gives 625 - 1 wayvs
to fill the first three chairs. Proceeding similarly. we find that the munber
of ways to seat the guestsis 6-5-1-3-2.1 =720,

If they change seats every half hour. it will take 360 howrs. that is. 15
days. to go through all the seating arrangements. Quite a party. at least as
far as the duration goes!

1.1.1 How many wayvs can these people be seated at the table if Alice. too. can
sit anywherce?

After the cake. the crowd wants to dance (bovs with girls. remember.
this is a conservative Enropean party). How many possible pairs can he
formed?

O, this is casyv: there are 3 girls. and cach can choose one of 4 boyvs.
this makes 3 - 1 = 12 possible pairs.

After ten davs have passed. our friends really need some new ideas to
keep the party going. Frank has one: “Let’s pool our resources and win the
lottery! All we have to do is to buy cnough tickets so that no matter what
they draw. we will have a ticket with the winning munbers. How many
tickets do we need for this?”

(In the lottery they are talking about. 5 munbers are selected ont of 90).)

“This is like the seating.” savs George. “Suppose we fill ont the tickets so
that Alice marks a munber. then she passes the ticket to Bob. who marks
a number and passes it to Carl. aud so on. Alice has 90 choices. and no
matter what she clhiooses. Bob has 89 choices, so there are 90 - 89 choices
for the first two munbers. and going on similarly. we get 90 - R9 - 88 - 87 - 86
possible choices for the five mumbers.”

“Actually. T think this is more like the handshake gquestion.” savs Alice.
“If we fill out the tickets the way vou suggested. we get the same ticket
more then once. For example. there will be a ticket where I mark 7 and
Bob marks 23, -and another one where I mark 23 and Bob marks 7.7

Carl jumps up: “Well. let’s imagine a ticket. sav. with munbers
7.23.31, 34, and 55. How many ways do we get it? Alice could have marked
any of them: no matter which one it was that she marked. Bob could have
marked any of the remaining four. Now this is really like the seating prob-
lem. We get every ticket H-4-3-2-1 times.”

“S0.” concludes Diane. =if we fill out the tickets the way George proposed.
then among the 90 - 89 - 88 - 87 - 86 tickets we get. every H-tuple oceurs not



