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Preface

This book is about convezr optimization, a special class of mathematical optimiza-
tion problems, which includes least-squares and linear programming problems. It
is well known that least-squares and linear programming problems have a fairly
complete theory, arise in a variety of applications, and can be solved numerically
very efficiently. The basic point of this book is that the same can be said for the
larger class of convex optimization problems.

While the mathematics of convex optimization has been studied for about a
century, several related recent developments have stimulated new interest in the
topic. The first is the recognition that interior-point methods, developed in the
1980s to solve linear programming problems, can be used to solve convex optimiza-
tion problems as well. These new methods allow us to solve certain new classes
of convex optimization problems, such as semidefinite programs and second-order
cone programs, almost as easily as linear programs.

The second development is the discovery that convex optimization problems
(beyond least-squares and linear programs) are more prevalent in practice than
was previously thought. Since 1990 many applications have been discovered in
areas such as automatic control systems, estimation and signal processing, com-
munications and networks, electronic circuit design, data analysis and modeling,
statistics, and finance. Convex optimization has also found wide application in com-
binatorial optimization and global optimization, where it is used to find bounds on
the optimal value, as well as approximate solutions. We believe that many other
applications of convex optimization are still waiting to be discovered.

There are great advantages to recognizing or formulating a problem as a convex
optimization problem. The most basic advantage is that the problem can then be
solved, very reliably and efficiently, using interior-point methods or other special
methods for convex optimization. These solution methods are reliable enough to be
embedded in a computer-aided design or analysis tool, or even a real-time reactive
or automatic control system. There are also theoretical or conceptual advantages
of formulating a problem as a convex optimization problem. The associated dual
problem, for example, often has an interesting interpretation in terms of the original
problem, and sometimes leads to an efficient or distributed method for solving it.

We think that convex optimization is an important enough topic that everyone
who uses computational mathematics should know at least a little bit about it.
In our opinion, convex optimization is a natural next topic after advanced linear
algebra (topics like least-squares, singular values), and linear programming.
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Goal of this book

For many general purpose optimization methods, the typical approach is to just
try out the method on the problem to be solved. The full benefits of convex
optimization, in contrast, only come when the problem is known ahead of time to
be convex. Of course, many optimization problems are not convex, and it can be
difficult to recognize the ones that are, or to reformulate a problem so that it is
convex.

Our main goal is to help the reader develop a working knowledge of
convex optimization, i.e., to develop the skills and background needed
to recognize, formulate, and solve convexr optimization problems.

Developing a working knowledge of convex optimization can be mathematically
demanding, especially for the reader interested primarily in applications. In our
experience (mostly with graduate students in electrical engineering and computer
science), the investment often pays off well, and sometimes very well.

There are several books on linear programming, and general nonlinear pro-
gramming, that focus on problem formulation, modeling, and applications. Several
other books cover the theory of convex optimization, or interior-point methods and
their complexity analysis. This book is meant to be something in between, a book
on general convex optimization that focuses on problem formulation and modeling.

We should also mention what this book is not. It is not a text primarily about
convex analysis, or the mathematics of convex optimization; several existing texts
cover these topics well. Nor is the book a survey of algorithms for convex optimiza-
tion. Instead we have chosen just a few good algorithms, and describe only simple,
stylized versions of them (which, however, do work well in practice). We make no
attempt to cover the most recent state of the art in interior-point (or other) meth-
ods for solving convex problems. Our coverage of numerical implementation issues
is also highly simplified, but we feel that it is adequate for the potential user to
develop working implementations, and we do cover, in some detail, techniques for
exploiting structure to improve the efficiency of the methods. We also do not cover,
in more than a simplified way, the complexity theory of the algorithms we describe.
We do, however, give an introduction to the important ideas of self-concordance
and complexity analysis for interior-point methods.

Audience

This book is meant for the researcher, scientist, or engineer who uses mathemat-
ical optimization, or more generally, computational mathematics. This includes,
naturally, those working directly in optimization and operations research, and also
many others who use optimization, in fields like computer science, economics, fi-
nance, statistics, data mining, and many fields of science and engineering. Our
primary focus is on the latter group, the potential users of convex optimization,
and not the (less numerous) experts in the field of convex optimization.

The only background required of the reader is a good knowledge of advanced
calculus and linear algebra. If the reader has seen basic mathematical analysis (e.g.,
norms, convergence, elementary topology), and basic probability theory, he or she
should be able to follow every argument and discussion in the book. We hope that
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readers who have not seen analysis and probability, however, can still get all of the
essential ideas and important points. Prior exposure to numerical computing or
optimization is not needed, since we develop all of the needed material from these
areas in the text or appendices.

Using this book in courses

We hope that this book will be useful as the primary or alternate textbook for
several types of courses. Since 1995 we have been using drafts of this book for
graduate courses on linear, nonlinear, and convex optimization (with engineering
applications) at Stanford and UCLA. We are able to cover most of the material,
though not in detail, in a one quarter graduate course. A one semester course allows
for a more leisurely pace, more applications, more detailed treatment of theory,
and perhaps a short student project. A two quarter sequence allows an expanded
treatment of the more basic topics such as linear and quadratic programming (which
are very useful for the applications oriented student), or a more substantial student
project.

This book can also be used as a reference or alternate text for a more traditional
course on linear and nonlinear optimization, or a course on control systems (or
other applications area), that includes some coverage of convex optimization. As
the secondary text in a more theoretically oriented course on convex optimization,
it can be used as a source of simple practical examples.
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1.1

Chapter 1

Introduction

In this introduction we give an overview of mathematical optimization, focusing on
the special role of convex optimization. The concepts introduced informally here
will be covered in later chapters, with more care and technical detail.

Mathematical optimization

A mathematical optimization problem, or just optimization problem, has the form

minimize  fo(z) (1.1)
subject to fi(z) <b;, i=1,...,m. ’

Here the vector z = (z1,...,%,) is the optimization variable of the problem, the
function fo : R® — R is the objective function, the functions f; : R* — R,
i=1,...,m, are the (inequality) constraint functions, and the constants by, ..., bnm
are the limits, or bounds, for the constraints. A vector z* is called optimal, or a
solution of the problem (1.1), if it has the smallest objective value among all vectors
that satisfy the constraints: for any z with fi(z) < by,..., fm(2) < b, we have
fol2) > fola®).

We generally consider families or classes of optimization problems, characterized
by particular forms of the objective and constraint functions. As an important
example, the optimization problem (1.1) is called a linear program if the objective
and constraint functions fy,..., f,, are linear, i.e., satisfy

filaz + By) = afi(z) + Bfi(y) (1.2)

for all z, y € R" and all @, 8 € R. If the optimization problem is not linear, it is
called a nonlinear program.

This book is about a class of optimization problems called conver optimiza-
tion problems. A convex optimization problem is one in which the objective and
constraint functions are convex, which means they satisfy the inequality

filaz + By) < afi(z) + Bfi(y) (1.3)
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forallz, ye R" andalla, 3 € Rwitha+f=1,a>0, 8> 0. Comparing (1.3)
and (1.2), we see that convexity is more general than linearity: inequality replaces
the more restrictive equality, and the inequality must hold only for certain values
of & and . Since any linear program is therefore a convex optimization problem,
we can consider convex optimization to be a generalization of linear programming.

Applications

The optimization problem (1.1) is an abstraction of the problem of making the best
possible choice of a vector in R" from a set of candidate choices. The variable x
represents the choice made; the constraints f;(z) < b; represent firm requirements
or specifications that limit the possible choices, and the objective value fo(z) rep-
resents the cost of choosing z. (We can also think of —fy(z) as representing the
value, or utility, of choosing z.) A solution of the optimization problem (1.1) corre-
sponds to a choice that has minimum cost (or maximum utility), among all choices
that meet the firm requirements.

In portfolio optimization, for example, we seek the best way to invest some
capital in a set of n assets. The variable z; represents the investment in the ith
asset, so the vector z € R" describes the overall portfolio allocation across the set of
assets. The constraints might represent a limit on the budget (i.e., a limit on the
total amount to be invested), the requirement that investments are nonnegative
(assuming short positions are not allowed), and a minimum acceptable value of
expected return for the whole portfolio. The objective or cost function might be
a measure of the overall risk or variance of the portfolio return. In this case,
the optimization problem (1.1) corresponds to choosing a portfolio allocation that
minimizes risk, among all possible allocations that meet the firm requirements.

Another example is device sizing in electronic design, which is the task of choos-
ing the width and length of each device in an electronic circuit. Here the variables
represent the widths and lengths of the devices. The constraints represent a va-
riety of engineering requirements, such as limits on the device sizes imposed by
the manufacturing process, timing requirements that ensure that the circuit can
operate reliably at a specified speed, and a limit on the total area of the circuit. A
common objective in a device sizing problem is the total power consumed by the
circuit. The optimization problem (1.1) is to find the device sizes that satisfy the
design requirements (on manufacturability, timing, and area) and are most power
efficient.

In data fitting, the task is to find a model, from a family of potential models,
that best fits some observed data and prior information. Here the variables are the
parameters in the model, and the constraints can represent prior information or
required limits on the parameters (such as nonnegativity). The objective function
might be a measure of misfit or prediction error between the observed data and
the values predicted by the model, or a statistical measure of the unlikeliness or
implausibility of the parameter values. The optimization problem (1.1) is to find
the model parameter values that are consistent with the prior information, and give
the smallest misfit or prediction error with the observed data (or, in a statistical



1.1.2

1.1 Mathematical optimization

framework, are most likely).

An amazing variety of practical problems involving decision making (or system
design, analysis, and operation) can be cast in the form of a mathematical opti-
mization problem, or some variation such as a multicriterion optimization problem.
Indeed, mathematical optimization has become an important tool in many areas.
It is widely used in engineering, in electronic design automation, automatic con-
trol systems, and optimal design problems arising in civil, chemical, mechanical,
and aerospace engineering. Optimization is used for problems arising in network
design and operation, finance, supply chain management, scheduling, and many
other areas. The list of applications is still steadily expanding.

For most of these applications, mathematical optimization is used as an aid to
a human decision maker, system designer, or system operator, who supervises the
process, checks the results, and modifies the problem (or the solution approach)
when necessary. This human decision maker also carries out any actions suggested
by the optimization problem, e.g., buying or selling assets to achieve the optimal
portfolio.

A relatively recent phenomenon opens the possibility of many other applications
for mathematical optimization. With the proliferation of computers embedded in
products, we have seen a rapid growth in embedded optimization. In these em-
bedded applications, optimization is used to automatically make real-time choices,
and even carry out the associated actions, with no (or little) human intervention or
oversight. In some application areas, this blending of traditional automatic control
systems and embedded optimization is well under way; in others, it is just start-
ing. Embedded real-time optimization raises some new challenges: in particular,
it requires solution methods that are extremely reliable, and solve problems in a
predictable amount of time (and memory).

Solving optimization problems

A solution method for a class of optimization problems is an algorithm that com-
putes a solution of the problem (to some given accuracy), given a particular problem
from the class, i.e., an instance of the problem. Since the late 1940s, a large effort
has gone into developing algorithms for solving various classes of optimization prob-
lems, analyzing their properties, and developing good software implementations.
The effectiveness of these algorithms, i.e., our ability to solve the optimization prob-
lem (1.1), varies considerably, and depends on factors such as the particular forms
of the objective and constraint functions, how many variables and constraints there
are, and special structure, such as sparsity. (A problem is sparse if each constraint
function depends on only a small number of the variables).

Even when the objective and constraint functions are smooth (for example,
polynomials) the general optimization problem (1.1) is surprisingly difficult to solve.
Approaches to the general problem therefore involve some kind of compromise, such
as very long computation time, or the possibility of not finding the solution. Some
of these methods are discussed in §1.4.

There are, however, some important exceptions to the general rule that most
optimization problems are difficult to solve. For a few problem classes we have
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effective algorithms that can reliably solve even large problems, with hundreds or
thousands of variables and constraints. Two important and well known examples,
described in §1.2 below (and in detail in chapter 4), are least-squares problems and
linear programs. It is less well known that convex optimization is another exception
to the rule: Like least-squares or linear programming, there are very effective
algorithms that can reliably and efficiently solve even large convex problems.

Least-squares and linear programming

In this section we describe two very widely known and used special subclasses of
convex optimization: least-squares and linear programming. (A complete technical
treatment of these problems will be given in chapter 4.)

Least-squares problems

A least-squares problem is an optimization problem with no constraints (i.e., m =
0) and an objective which is a sum of squares of terms of the form alz — b

minimize fo(x) = |4z — b} = £, (e x — b;)?. (1.4)

Here A € R*" (with k > n), al are the rows of A, and the vector z € R" is the
optimization variable.

Solving least-squares problems

The solution of a least-squares problem (1.4) can be reduced to solving a set of
linear equations,

(AT A)z = ATb,

so we have the analytical solution z = (AT A)~'ATb. For least-squares problems
we have good algorithms (and software implementations) for solving the problem to
high accuracy, with very high reliability. The least-squares problem can be solved
in a time approximately proportional to n?k, with a known constant. A current
desktop computer can solve a least-squares problem with hundreds of variables, and
thousands of terms, in a few seconds; more powerful computers, of course, can solve
larger problems, or the same size problems, faster. (Moreover, these solution times
will decrease exponentially in the future, according to Moore’s law.) Algorithms
and software for solving least-squares problems are reliable enough for embedded
optimization.

In many cases we can solve even larger least-squares problems, by exploiting
some special structure in the coefficient matrix A. Suppose, for example, that the
matrix A is sparse, which means that it has far fewer than kn nonzero entries. By
exploiting sparsity, we can usually solve the least-squares problem much faster than
order n?k. A current desktop computer can solve a sparse least-squares problem
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with tens of thousands of variables, and hundreds of thousands of terms, in around
a minute (although this depends on the particular sparsity pattern).

For extremely large problems (say, with millions of variables), or for problems
with exacting real-time computing requirements, solving a least-squares problem
can be a challenge. But in the vast majority of cases, we can say that existing
methods are very effective, and extremely reliable. Indeed, we can say that solving
least-squares problems (that are not on the boundary of what is currently achiev-
able) is a (mature) technology, that can be reliably used by many people who do
not know, and do not need to know, the details.

Using least-squares

The least-squares problem is the basis for regression analysis, optimal control, and
many parameter estimation and data fitting methods. It has a number of statistical
interpretations, e.g., as maximum likelihood estimation of a vector z, given linear
measurements corrupted by Gaussian measurement errors.

Recognizing an optimization problem as a least-squares problem is straightfor-
ward; we only need to verify that the objective is a quadratic function (and then
test whether the associated quadratic form is positive semidefinite). While the
basic least-squares problem has a simple fixed form, several standard techniques
are used to increase its flexibility in applications.

In weighted least-squares, the weighted least-squares cost

k
Z wi(alz — b;)?,
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where wy,...,wy are positive, is minimized. (This problem is readily cast and
solved as a standard least-squares problem.) Here the weights w; are chosen to
reflect differing levels of concern about the sizes of the terms alz — b;, or simply
to influence the solution. In a statistical setting, weighted least-squares arises
in estimation of a vector z, given linear measurements corrupted by errors with
unequal variances.

Another technique in least-squares is regularization, in which extra terms are
added to the cost function. In the simplest case, a positive multiple of the sum of
squares of the variables is added to the cost function:
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where p > 0. (This problem too can be formulated as a standard least-squares
problem.) The extra terms penalize large values of z, and result in a sensible
solution in cases when minimizing the first sum only does not. The parameter p is
chosen by the user to give the right trade-off between making the original objective
function Y°_, (a7 —b;)2 small, while keeping 37, @2 not too big. Regularization
comes up in statistical estimation when the vector z to be estimated is given a prior
distribution.

Weighted least-squares and regularization are covered in chapter 6; their sta-
tistical interpretations are given in chapter 7.



