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Preface

Uncertainty is one of the characteristics of the nature. Many theories have been
proposed in dealing with uncertainties. Fuzzy logic has been one of such theories.
Both of us were inspired by Zadeh’s fuzzy theory and Jonathan Lawry’s label
semantics theory when we both worked in University of Bristol.

Machine learning and data mining are inseparably connected with uncertainty.
To begin with, the observable data for learning is usually imprecise, incomplete or
noisy. Even the observations are perfect, the generalization beyond that data is still
afflicted with uncertainty; e.g., how can we be sure which one from a set of candidate
theories that all of them explain the data. Though Occam’s razor tells us to favor the
simplest models, this principle does not guarantee this simple model is the truth of
the data. In recent research, we have found that some complex models seem to be
more appropriate comparing to simple ones because of our complex nature and the
complicated mechanism of data generation in social problems.

In this book, we introduce a fuzzy logic basesd theory for modeling uncertainty
in data mining. The content of this book can be roughly split into three parts:
Chapters 1-3 give a general introduction of data mining and the basics of label
semantics theory. Chapters 48 introduce a number of data mining algorithms based
on label semantics and detailed theoretical aspects, and experimental results are
given. Chapters 9-12 introduce prototype theory interpretation of label semantics
and data mining algorithms developed based on this interpretation. This book is for
the readers like postgraduates and researchers in Al, data mining, soft computing
and other related areas.

Zengchang Qin
Pittsburgh, PA, USA
Yongchuan Tang
Hangzhou, China
July, 2013
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1

Introduction

So far as the laws of mathematics refer to reality, they are not certain. And so far as they are
certain, they do not refer to reality.

— Albert Einstein (1879-1955), “Geometry and Experience”

1.1 Types of Uncertainty

Our nature is uncertain. Given this fact, there are two main streams of philosophy
to understand uncertainty. First, the nature is incomplete and is full of uncertainties.
Uncertainty is an objective and undeniable fact of nature. The second stream implies
that the nature is governed by orders and laws. However, we cannot perceive all
these laws from our limited cognitive abilities. That is where the uncertainties come
from. The existence of uncertainty is because of the lack of information. Following
these two streams of philosophy, uncertainty can be roughly classified into the
following two categories:

(1) Epistemic or systematic uncertainties are due to things we could in principle
know but don’t in practice. This may be either because we have not measured
a quantity sufficiently accurately, or because our model neglects certain effects.
The uncertainty comes from an imprecise nature which is involved with mixture
of truths. As gray is a mixture of black and white.

(2) Aleatoric or statistical uncertainties are unknowns that differ each time we
would make the same experiment. We assume there exists an ideological and
undeniable fact which is the reason for a phenomenon. However, it cannot be
perceived due to the limitation of human cognitive abilities. Each experiment is
actually the observable evidence of this “fact” from which we can know better
about this fact by conducting repeated experiments.

Vagueness or ambiguity is sometimes described as “second order uncertainty”,
where there is uncertainty even about the definitions of uncertain states or outcomes.
To quote Lindley !



2 1 Introduction

There are some things that you know to be true, and others that you
know to be false; yet, despite this extensive knowledge that you have, there
remain many things whose truth or falsity is not known to you. We say that
you are uncertain about them. You are uncertain, to varying degrees, about
everything in the future; much of the past is hidden from you; and there is a
lot of the present about which you do not have full information. Uncertainty
is everywhere and you cannot escape from it.

Philosophically, uncertainty is ubiquitous. However, in the practice of science
and engineering, what we are concerned with is how to predict future events by using
uncertain information with a proper measure. Probability is a way of expressing
knowledge or belief that an event will occur or has occurred using uncertainty
information. Generally, there are two broad categories of probability interpretations:
frequentists and Bayesians. Frequentists consider probability to be the relative
frequency of occurrence from repeating games. Bayesians use probability as a
measure of an individual’s degree of belief. Such belief can be updated by new
observable evidence from a prior!?]. In the last few decades, Bayesian probability
has been widely used in probabilistic reasoning and statistical inference!**/. Many
successful algorithms have been proposed and applications have been used in real-
world practice. Bayesian probability theory assumes that uncertainty exists because
of the limitation of our cognitive abilities and lack of information”. Some other
uncertainty theories have been proposed to assume that the nature itself is uncertain
and independent from the limited abilities of acquiring this information. Among
them, Fuzzy Logic is the most successful and widely-used theory of modeling such
a type of uncertainty.

Proposed by Zadeh in 1965 131, fuzzy logic is a superset of conventional Boolean
logic that has been extended to handle the concept of partial truth (an interpretation
of the uncertainty of being true) — truth values between “completely true” and
“completely false”. Three hundred years B.C., the Greek philosopher, Aristotle,
came up with binary logic of true and false, which is now the principle foundation
of mathematics. Two centuries before Aristotle, Buddha, had the belief which
contradicted the black-and-white world, which went beyond the bivalent cocoon and
sees the world as it is, filled with contradictions. Such beliefs are popular especially
in oriental cultures, such as the Chinese Yin-Yang concept which is used to describe
how polar or seemingly contrary forces are interconnected and interdependent in the
natural world, and how they give rise to each other in turn (61,

Both fuzzy logic and probability theory can be used to represent subjective
belief. Fuzzy set theory uses the concept of fuzzy set membership (i.e., how much a
variable is in a set), and probability theory (Bayesian) uses the concept of subjective
probability (i.e., how probable do I think that a variable is in a set). While this
distinction is mostly philosophical, there is no such situation where this variable
is partially in the set; the variable is either in the set or not, absolutely. However,
we do not have such absolute belief because of the lack of information. The

@ According to Jaynes, probability is an extension of logic given incomplete information 2]
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fuzzy-logic-derived possibility measure is inherently different from the probability
measure; hence, they are not directly equivalent!”]. The work presented in this book
actually uses both fuzzy logic and probability for modeling uncertainty and making
predictions based on observable evidence. The nature of uncertainty is modeled by
fuzzy labels and the reasoning for using evidence is probabilistic.

A prediction or forecast is a statement about the way things will happen in
the future. A basic difference between a good predictor and a random guesser 1s
that a good predictor always uses the previous experience or embedded knowledge
when making predictions. We human beings are using such a way for making wise
decisions or predictions. The research of studying how to effectively use machines
to make predictions using given historic data is referred to as machine learning®),
In this information age, we are buried by a tremendous amount of data. How we
use machine learning algorithms to exploit the data for discovering useful patterns
is called data mining.

Machine learning and data mining research has developed rapidly in recent
decades. As one of the most successful branches of artificial intelligence (AI),
it has had a tremendous impact on the current world @, Many new technologies
have emerged or been reborn with its development such as bioinformatics o1,
natural language processing!'%!, computer vision!'!), information theory!'?!, and
information retrieval ('3, Traditionally machine learning and data mining research
has focused on learning algorithms with high classification or prediction accuracy.
From another perspective, however, this is not always sufficient for some real world
applications that require good algorithm transparency. By the latter we refers to
the interpretability of models; that is, the models need to be easily understood
and provide information regarding underlying trends and relationships that can be
used by practitioners in the relevant fields. Transparent models should allow for a
qualitative understanding of the underlying system in addition to giving quantitative
predictions of behavior. The intuition behind this idea is the way of human reasoning
with imprecise concepts. It has been a well-accepted fact that computers have beaten
the human being in numerical calculations in both accuracy and speed. However, the
capability of imprecise reasoning is still Achilles” heel for machines.

Uncertainty and imprecision are often inherent in modeling these real-world
applications and it is desirable that these should be incorporated into learning
algorithms. In this book, we shall investigate the effectiveness of a high-level
modeling framework from the dual perspectives of accuracy and interpretability.
The reasoning is that by enabling models to be defined in terms of linguistic
expressions we can enhance robustness, accuracy and transparency. We need
a higher level modeling language which is to be truly effective and it must

@1n 2011, IBM’s Watson, an artificial intelligence computer system capable of answering
questions posed in natural language, beat other human competitors on a famous American
quiz show Jeopardy and became the biggest winner. Its core algorithm, DeepQA, basically
uses advanced machine learning and information retrieval technologies. This is a big event
for attracting people’s attention to the long lasting human-machine competition since the
last breakthrough by Deep Blue, the world champion chess player, also from IBM.
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provide a natural knowledge representation framework for inductive learning. As
such it is important that it allows for the modeling of uncertainty, imprecision
and vagueness in a semantically clear manner. Here we present such a higher
level knowledge representation framework centered on the Modeling with Words
(MW) 14 paradigm.

We need to notice that the underlying semantics of our approach is quite
different from computing with words (CW) © proposed by Zadeh!'>!, In this book,
the framework is used mainly for modeling and building intelligent data mining
systems. In such systems, we use words or fuzzy labels for modeling uncertainties
and use probabilistic approaches for reasoning. Therefore, the framework we will
introduce is an achievement of the research of modeling with words (MW) rather
than CW. The new framework we shall use in this book, label semantics!1®!, is a
random set based semantics for modeling imprecise concepts where the degree of
appropriateness of a linguistic expression, as a description of a value, is measured
in terms of how the set of appropriate labels for that value varies across a
population. Different from traditional fuzzy logic, fuzzy memberships are viewed
as being fixed point coverage functions of random sets, themselves representing
uncertainty or variations in underlying crisp definition of an imprecise concept.
Also, label semantics allows linguistic queries and information fusion in a logical
representation of linguistic expressions. Therefore, label semantics provides us with
an ideal framework for modeling uncertainty with good transparency.

1.2 Uncertainty Modeling and Data Mining

Since the invention of fuzzy logic, it has been widely applied in engineering
especially in control problems by handling the uncertainty information as a set
of expert rules. However, in this information age, we are facing some new
challenges. Nowadays, a tremendous amount of data and information has flooded us.
Contributing factors including the widespread use of the World Wide Web (WWW)
and other digital innovations in electronics and computing, such as digital cameras,
intelligent mobile phones, PDAs and new portal computing devices such as iPad,
Blackberry, Kindle, and etc. Most importantly, all the classical communication tools
such as papers, books, photos, videos are digitalized and have never been so easily
accessed as today. We are in the age of overwhelming information. The ability
to find the wseful information has never been so important in history. Valuable
information may be hiding behind the data, but it is difficult for human beings
to extract this without powerful tools. We have already been living in a “data
rich but information poor” environment since the invention of these innovative IT
infrastructures and devices. To relieve such a plight, data mining research emerged
and has developed rapidly in the past few decades.

@ CW is focused on developing a calculus of using linguistid terms directly for reasoning
based on a fuzzy logic framework. More details on modeling with words are available in
Reference [14], in which Zadeh pointed out the differences between CW and MW in the
foreword of this book.
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Data mining has become one of the most active and exciting areas for its
omnipresent applicability in the current world. Approaches to data mining research
mainly include three perspectives according to Zhou!'”l: databases, machine
learning, and statistics. Especially from the perspective of machine learning, many
data mining algorithms have been developed to accomplish a limited set of tasks and
produce a particular enumeration patterns over data sets. But more theoretical and
practical problems still block our way to gain knowledge from data. Among these
obstacles, uncertainty is one of the most intractable. The traditional data mining
algorithms, such as decision trees!'®!%! and K-means clustering!?”!, are crisp and
each database value may be classified into at most one cluster. This is unlikely to
satisfy everyday life experiences where a value may be partially classified into one
or more categories.

Probabilistic approaches for data mining have been the main stream of this
research for handling the statistical uncertainties. We generally assume some prior
probabilities in the hypothesis space, by inference on observations, to yield the
best hypothesis that can explain the observations best. Form another perspective,
systemic uncertainties are not well handled in such a probabilistic reasoning
framework. Imprecise data, missing data, and human subjectivity, all could cause
such uncertainty. Fuzzy logic is a good means for handling these uncertainties, and
also provides an inference methodology to enable the principles of approximate
human reasoning capabilities to be systematically used as a basis for knowledge-
based systems. In contrast to a classic set, the boundary of a fuzzy set is blurred.
This smooth transition is characterized by membership functions which give a
fuzzy set flexibility in modeling linguistic expressions. The appearance of fuzzy
logic becomes an important milestone in not only mathematics and logic but also
scientific philosophy — it is complementary to our classical 0-or-1, black-or-white
view of the nature!2!l. Interpretations of membership degrees include similarity,
preference, and uncertainty ??: they can state how similar an object or case is to
a prototypical one, they can indicate preferences between suboptimal solutions to
a problem, or they can model uncertainty about the true situation that is described
in imprecise terms. Generally, due to their closeness to human reasoning, solutions
obtained using fuzzy approaches are easy to understand and apply.

Uncertainty may exist in data mining models in various different ways:

(1) The model structure, i.e., how accurately a mathematical model describes the
true system for a real-life situation, may be known only approximately. Models
are almost always only approximations to reality.

(2) The numerical approximation, i.e., how appropriately a numerical method
is used in approximating the operation of the system. Most models are too
complicated to solve exactly. For example, the finite element method may
be used to approximate the solution of a partial differential equation, but
this introduces an error (the difference between the exact and the numerical
solutions).

(3) Input and/or model parameters may be known only approximately due to the
noise of data.



