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Preface

This book aims at a unified and economical development of the core the-
ory and algorithms of total cost sequential decision problems, based on
the strong connections of the subject with fixed point theory. The analy-
sis focuses on the abstract mapping that underlies dynamic programming
(DP for short) and defines the mathematical character of the associated
problem. Our discussion centers on two fundamental properties that this
mapping may have: monotonicity and (weighted sup-norm) contraction. It
turns out that the nature of the analytical and algorithmic DP theory is
determined primarily by the presence or absence of these two properties,
and the rest of the problem’s structure is largely inconsequential.

In this book, with some minor exceptions, we will assume that mono-
tonicity holds. Consequently, we organize our treatment around the con-
traction property, and we focus on four main classes of models:

(a) Contractive models, discussed in Chapter 2, which have the richest
and strongest theory, and are the benchmark against whith the the-
ory of other models is compared. Prominent among these models are
discounted stochastic optimal control problems. The development of
these models is quite thorough and includes the analysis of recent ap-
proximation algorithms for large-scale problems (neuro-dynamic pro-
gramming, reinforcement learning).

(b) Semicontractive models, discussed in Chapter 3 and parts of Chap-
ter 4. The term “semicontractive” is used qualitatively here, to refer
to a variety of models where some policies have a regularity/contrac-
tion-like property but others do not. A prominent example is stochas-
tic shortest path problems, where one aims to drive the state of
a Markov chain to a termination state at minimum expected cost.
These models also have a strong theory under certain conditions, of-
ten nearly as strong as those of the contractive models.

(c) Noncontractive models, discussed in Chapter 4, which rely on just
monotonicity. These models are more complex than the preceding
ones and much of the theory of the contractive models generalizes in
weaker form, if at all. For example, in general the associated Bell-
man equation need not have a unique solution, the value iteration
method may work starting with some functions but not with others,
and the policy iteration method may not work at all. Infinite hori-
zon examples of these models are the classical positive and negative
DP problems, first analyzed by Dubins and Savage, Blackwell, and
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Strauch, which are discussed in various sources. Some new semicon-
tractive models are also discussed in this chapter, further bridging
the gap between contractive and noncontractive models.

(d) Restricted policies and Borel space models, which are discussed
in Chapter 5. These models are motivated in part by the complex
measurability questions that arise in mathematically rigorous theories
of stochastic optimal control involving continuous probability spaces.
Within this context, the admissible policies and DP mapping are
restricted to have certain measurability properties, and the analysis
of the preceding chapters requires modifications. Restricted policy
models are also useful when there is a special class of policies with
favorable structure, which is “closed” with respect to the standard DP
operations, in the sense that analysis and algorithms can be confined
within this class.

We do not consider average cost DP problems, whose character bears
a much closer connection to stochastic processes than to total cost prob-
lems. We also do not address specific stochastic characteristics underlying
the problem, such as for example a Markovian structure. Thus our re-
sults apply equally well to Markovian decision problems and to sequential
minimax problems. While this makes our development general and a con-
venient starting point for the further analysis of a variety of different types
of problems, it also ignores some of the interesting characteristics of special
types of DP problems that require an intricate probabilistic analysis.

Let us describe the research content of the book in summary, de-
ferring a more detailed discussion to the end-of-chapter notes. A large
portion of our analysis has been known for a long time, but in a somewhat
fragmentary form. In particular, the contractive theory, first developed by
Denardo [Den67], has been known for the case of the unweighted sup-norm,
but does not cover the important special case of stochastic shortest path
problems where all policies are proper. Chapter 2 transcribes this theory
to the weighted sup-norm contraction case. Moreover, Chapter 2 develops
extensions of the theory to approximate DP, and includes material on asyn-
chronous value iteration (based on the author’s work [Ber82|, [Ber83]), and
asynchronous policy iteration algorithms (based on the author’s joint work
with Huizhen (Janey) Yu [BeY10a], [BeY10b], [YuB1la]). Most of this
material is relatively new, having been presented in the author’s recent
book [Ber12a] and survey paper [Berl2b], with detailed references given
there. The analysis of infinite horizon noncontractive models in Chapter 4
was first given in the author’s paper [Ber77], and was also presented in the
book by Bertsekas and Shreve [BeS78], which in addition contains much
of the material on finite horizon problems, restricted policies models, and
Borel space models. These were the starting point and main sources for
our development.

The new research presented in this book is primarily on the semi-
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contractive models of Chapter 3 and parts of Chapter 4. Traditionally,
the theory of total cost infinite horizon DP has been bordered by two ex-
tremes: discounted models, which have a contractive nature, and positive
and negative models, which do not have a contractive nature, but rely
on an enhanced monotonicity structure (monotone increase and monotone
decrease models, or in classical DP terms, positive and negative models).
Between these two extremes lies a gray area of problems that are not con-
tractive, and either do not fit into the categories of positive and negative
models, or possess additional structure that is not exploited by the theory
of these models. Included are stochastic shortest path problems, search
problems, linear-quadratic problems, a host of queueing problems, multi-
plicative and exponential cost models, and others. Together these problems
represent an important part of the infinite horizon total cost DP landscape.
They possess important theoretical characteristics, not generally available
for positive and negative models, such as the uniqueness of solution of Bell-
man’s equation within a subset of interest, and the validity of useful forms
of value and policy iteration algorithms.

Our semicontractive models aim to provide a unifying abstract DP
structure for problems in this gray area between contractive and noncon-
tractive models. The analysis is motivated in part by stochastic shortest
path problems, where there are two types of policies: proper, which are
the ones that lead to the termination state with probability one from all
starting states, and improper, which are the ones that are not proper.
Proper and improper policies can also be characterized through their Bell-
man equation mapping: for the former this mapping is a contraction, while
for the latter it is not. In our more general semicontractive models, policies
are also characterized in terms of their Bellman equation mapping, through
a notion of regularity, which generalizes the notion of a proper policy and
is related to classical notions of asymptotic stability from control theory.

In our development a policy is regular within a certain set if its cost
function is the unique asymptotically stable equilibrium (fixed point) of
the associated DP mapping within that set. We assume that some policies
are regular while others are not, and impose various assumptions to ensure
that attention can be focused on the regular policies. From an analytical
point of view, this brings to bear the theory of fixed points of monotone
mappings. From the practical point of view, this allows application to a
diverse collection of interesting problems, ranging from stochastic short-
est path problems of various kinds, where the regular policies include the
proper policies, to linear-quadratic problems, where the regular policies
include the stabilizing linear feedback controllers.

The definition of regularity is introduced in Chapter 3, and its theoret-
ical ramifications are explored through extensions of the classical stochastic
shortest path and search problems. In Chapter 4, semicontractive models
are discussed in the presence of additional monotonicity structure, which
brings to bear the properties of positive and negative DP models. With the
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aid of this structure, the theory of semicontractive models can be strength-
ened and can be applied to several additional problems, including risk-
sensitive/exponential cost problems.

The book has a theoretical research monograph character, but re-
quires a modest mathematical background for all chapters except the last
one, essentially a first course in analysis. Of course, prior exposure to DP
will definitely be very helpful to provide orientation and context. A few
exercises have been included, either to illustrate the theory with exam-
ples and counterexamples, or to provide applications and extensions of the
theory. Solutions of all the exercises can be found in Appendix D, at the
book’s internet site

http://www.athenasc.com/abstractdp.html
and at the author’s web site
http://web.mit.edu/dimitrib/www/home.html

Additional exercises and other related material may be added to these sites
over time.

I would like to express my appreciation to a few colleagues for inter-
actions, recent and old, which have helped shape the form of the book. My
collaboration with Steven Shreve on our 1978 book provided the motivation
and the background for the material on models with restricted policies and
associated measurability questions. My collaboration with John Tsitsiklis
on stochastic shortest path problems provided inspiration for the work on
semicontractive models. My collaboration with Janey Yu played an im-
portant role in the book’s development, and is reflected in our joint work
on asynchronous policy iteration, on perturbation models, and on risk-
sensitive models. Moreover Janey contributed significantly to the material
on semicontractive models with many insightful suggestions. Finally, I am
thankful to Mengdi Wang, who went through portions of the book with
care, and gave several helpful comments.

Dimitri P. Bertsekas, Spring 2013
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NOTE ADDED TO THE CHINESE EDITION

The errata of the original edition, as per March 1, 2014, have been incor-
porated in the present edition of the book. The following two papers have
a strong connection to the book, and amplify on the range of applications
of the semicontractive models of Chapters 3 and 4:

(1) D.P. Bertsekas, “Robust Shortest Path Planning and Semicontractive
Dynamic Programming,” Lab. for Information and Decision Systems
Report LIDS-P-2915, MIT, Feb. 2014.

(2) D. P. Bertsekas, “Infinite-Space Shortest Path Problems and Semicon-
tractive Dynamic Programming,” Lab. for Information and Decision
Systems Report LIDS-P-2916, MIT, Feb. 2014.

&

These papers may be viewed as “on-line appendixes” of the book. They
can be downloaded from the book’s internet site and the author’s web page.



Contents

1.

2.

3.

Introduction . p-1
1.1. Structure of Dynamic Programming Problems . . . . . . . p. 2
1.2. Abstract Dynamic Programming Models . . . . . . . . . . p-5
1.2.1. Problem Formulation . . . . . . . . . . . . .. .. p-5
1.2.2. Monotonicity and Contraction Assumptions . . . . . . p.-7
1.2.3. Some Examples . . . . . . . . . .. ... .. .. p-9
1.2.4. Approximation-Related Mappings . . . . . . . . . . p. 21
1.3. Organization of the Book . . . . . . . . . . . . .. .. p- 23
1.4. Notes, Sources, and Exercises . . . . . . . . . . . . . .. p- 25

Contractive Models . . . . . . . . . . ... ... .p. 29

2.1. Fixed Point Equation and Optimality Conditions . . . . . . p- 30
2.2. Limited Lookahead Policies . . . . . . . . .. . . . . . p- 37
2.3. Value Iteration . . . . . . . . . . . . ... .. .... p. 42
2.3.1. Approximate Value Iteration . . . . . . . . . . . . . p. 43
2.4. Policy Iteration . . . . . . . . . . . . . . ... . ... p- 46
2.4.1. Approximate Policy Iteration . . . . . . . . . . . . p- 48
2.5. Optimistic Policy Iteration . . . . . . . . . . . . . . .. p- 52
2.5.1. Convergence of Optimistic Policy Iteration . . . . . . p- 52
2.5.2. Approximate Optimistic Policy Iteration . . . . . . . p. 57
2.6. Asynchronous Algorithms . . . . . . . . . . . . . ... p- 61
2.6.1. Asynchronous Value Iteration . . . . . . . . . . . . p. 61
2.6.2. Asynchronous Policy Iteration . . . . . . . . . . . . p. 67
2.6.3. Policy Iteration with a Uniform Fixed Point . . . . . . p. 72
2.7. Notes, Sources, and Exercises . . . . . . . . . . . . . .. p-79

Semicontractive Models . . . . . . . . .. .. . . .p.85

3.1. Semicontractive Models and Regular Policies . . . . . . . . p. 86
3.1.1. Fixed Points, Optimality Conditions, and
Algorithmic Results . . . . . . . . . . . . . ... p- 90
3.1.2. Illustrative Example: Deterministic Shortest
Path Problems . . . . . . . . . . . . ... ... p. 97
3.2. Irregular Policies and a Perturbation Approach . . . . . p- 100
3.2.1. The Case Where Irregular Policies Have Infinite
Cost . . . . . . . .. p- 100

3.2.2. The Case Where Irregular Policies Have Finite

iii



iv Contents
Cost - Perturbations p. 107
3.3. Algorithms . p. 116
3.3.1. Asynchronous Value Iteratlon p. 117
3.3.2. Asynchronous Policy Iteration . p. 118
3.3.3. Policy Iteration with Perturbations . p. 124
3.4. Notes, Sources, and Exercises . . . . p- 125
4. Noncontractive Models p- 129
1. Noncontractive Models p- 130
4.2. Finite Horizon Problems . p- 133
4.3. Infinite Horizon Problems : p- 139
4.3.1. Fixed Point Properties and Optlmahty COHdlthnS p. 143
4.3.2. Value Iteration . .. 3w e e e . p. 154
4.3.3. Policy Iteration . p. 157
4.4. Semicontractive-Monotone Increasmg Models ) p. 163
4.4.1. Value and Policy Iteration Algorithms . . . p.163
4.4.2. Some Applications . . . S p. 166
4.4.3. Linear-Quadratic Problems p- 168
4.5. Affine Monotonic Models . p- 171
4.5.1. Increasing Affine Monotonic Models p. 172
4.5.2. Nonincreasing Affine Monotonic Models . p- 173
4.5.3. Exponential Cost Stochastic Shortest Path
Problems p. 175
4.6. An Overview of Semlcontractlve Models and Results p- 179
4.7. Notes, Sources, and Exercises . p.- 179
5. Models with Restricted Policies . . . . . . . . . . . p. 187
5.1. A Framework for Restricted Policies . . p. 188
5.1.1. General Assumptions . . . p. 192
5.2. Finite Horizon Problems . p- 196
5.3. Contractive Models p. 198
5.4. Borel Space Models . p- 200
5.5. Notes, Sources, and Exercises . p- 201
Appendix A: Notation and Mathematical Conventions . p. 203
Appendix B: Contraction Mappings . p- 207
Appendix C: Measure Theoretic Issues p. 216
Appendix D: Solutions of Exercises p. 230
References p. 241
Index p. 247



Introduction

Contents

1.1. Structure of Dynamic Programming Problems e,
1.2. Abstract Dynamic Programming Models . . . . . . .
1.2.1. Problem Formulation . . . . . . . . . . . ..
1.2.2. Monotonicity and Contraction Assumptions . . . .
1:2:3: Seme Bxamples ., o/ lah ot i ki 0 L L
1.2.4. Approximation-Related Mappings . . . . . . . .
1.3. Organization of the Book . . . . . . . . . . . . . .
1.4. Notes, Sources, and Exercises . . . . . . . . . . . . .




2 Introduction Chap. 1
1.1 STRUCTURE OF DYNAMIC PROGRAMMING PROBLEMS

Dynamic programming (DP for short) is the principal method for analysis
of a large and diverse class of sequential decision problems. Examples are
deterministic and stochastic optimal control problems with a continuous
state space, Markov and semi-Markov decision problems with a discrete
state space, minimax problems, and sequential zero sum games. While the
nature of these problems may vary widely, their underlying structures turn
out to be very similar. In all cases there is an underlying mapping that de-
pends on an associated controlled dynamic system and corresponding cost
per stage. This mapping, the DP operator, provides a “compact signature”
of the problem. It defines the cost function of policies and the optimal cost
function, and it provides a convenient shorthand notation for algorithmic
description and analysis.

More importantly, the structure of the DP operator defines the math-
ematical character of the associated problem. The purpose of this book is to
provide an analysis of this structure, centering on two fundamental prop-
erties: monotonicity and (weighted sup-norm) contraction. It turns out
that the nature of the analytical and algorithmic DP theory is determined
primarily by the presence or absence of these two properties, and the rest
of the problem’s structure is largely inconsequential.

A Deterministic Optimal Control Example

To illustrate our viewpoint, let us consider a discrete-time deterministic
optimal control problem described by a system equation

Tk+1 :f(wkauk)v k:()’l’ (11)

Here zy, is the state of the system taking values in a set X (the state space),
and uyg, is the control taking values in a set U (the control space). At stage
k, there is a cost

akg(zk, uk)
incurred when uy, is applied at state x, where « is a scalar in (0, 1] that has
the interpretation of a discount factor when o < 1. The controls are chosen
as a function of the current state, subject to a constraint that depends on
that state. In particular, at state x the control is constrained to take values
in a given set U(z) C U. Thus we are interested in optimization over the
set of (nonstationary) policies

H={{/L0,,u,1,...}|uk€M,k:O,1,_,,},
where M is the set of functions p : X — U defined by

M={p|px)eU(z),VzeX}.
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The total cost of a policy m = {0, i1, ...} over an infinite number of
stages and starting at an initial state xo is

Jw(a:()) = Zakg(xk,,u'k(xk))a (12)
k=0

where the state sequence {z;} is generated by the deterministic system
(1.1) under the policy =:

Tk+1 =f(1:k,/'l‘k(xk))3 k=0’1,
The optimal cost function is t

J*(z) = 1}161% Jr (), z € X.

For any policy m = {0, g1, - - .}, consider the policy m1 = {u1, 2, ...}
and write by using Eq. (1.2),

I (z) = g(z, po(x)) + oty (f(z, po(x))-

We have for all z € X

T = inf{g(m0(@) +ade (f () }

m={po,m1 }€Il

1nf {g T, po(z)) + o 1nf J1r1 (f (=, MO(x))}

inf {g(z, uo(2)) + aJ* (f(z, m0(2)) }-

poEM

The minimization over pg € M can be written as minimization over all
u € U(zx), so we can write the preceding equation as

J*(x) =u€i3€$) {g(z,y)+aJ*(f(:c,u))}, VzelX. (1.3)

This equation is an example of Bellman’s equation, which plays a
central role in DP analysis and algorithms. If it can be solved for J*,
an optimal stationary policy {u*,p*,...} may typically be obtained by
minimization of the right-hand side for each z, i.e.,

w*(z) Eargugbi&) {g(a:,u)-{-aJ*(f(a:,u))}, VzelX. (1.4)

t For the informal discussion of this section, we will disregard a few mathe-
matical issues. In particular, we assume that the series defining J» in Eq. (1.2)
is convergent for all allowable 7, and that the optimal cost function J* is real-
valued. We will address such issues later.
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We now note that both Egs. (1.3) and (1.4) can be stated in terms of
the expression

H(z,u,J) = g(z,u) + aJ (f(z,u)), ze X, ueU(x).
Defining
(TuJ)(z) = H(z, u(z),J), z € X,

and

TJ = inf H(z,u,J)= inf (T,J)(z), € X,
D@ = inf HwJ)= inf (L)), a

we see that Bellman’s equation (1.3) can be written compactly as
J=TJ",

i.e., J* is the fixed point of T', viewed as a mapping from the set of real-
valued functions on X into itself. Moreover, it can be similarly seen that
Jyu, the cost function of the stationary policy {u, u,. ..}, is a fixed point of
T,. In addition, the optimality condition (1.4) can be stated compactly as

Ty J* = TJ".

We will see later that additional properties, as well as a variety of algorithms
for finding J* can be analyzed using the mappings T and T},.

One more property that holds in some generality is worth noting. For
a given policy ™ = {po, f41,...} and a terminal cost oV J(zx) for the state
zn at the end of IV stages, consider the N-stage cost function

N-1

Jr,N(Z0) = aNJ_(zN) + Z akg(xk,uk(zk)). (1.5)
k=0

Then it can be verified by induction that for all initial states zo, we have
Jr,N(20) = (Tuo Ty -+ Tup—1 J) (@0). (1.6)

Here T),,Ty, - Ty, is the composition of the mappings Tg, Tyyy -+ - Ty ;s
i.e., for all J,

(TuoTpy J)(x) = (THO(TM J))('T)7 z € X,
and more generally
(Tuo Ty, - "TMN—lJ)(x) = (Tuo(Tm(' " (TuN_l J)))) (=), Tz e X,

(our notational conventions are summarized in Appendix A). Thus the

finite horizon cost functions Jr n of 7 can be defined in terms of the map-

pings T}, [cf. Eq. (1.6)], and so can their infinite horizon limit Jx:

Ir(z) = lim (TpoT)y, "'T#N-1j)(z)a T € X, (L.7)
N—oo

where J is the zero function, J(z) = 0 for all z € X (assuming the limit

exists).
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Connection with Fixed Point Methodology

The Bellman equation (1.3) and the optimality condition (1.4), stated in
terms of the mappings T, and T', highlight the central theme of this book,
which is that DP theory is intimately connected with the theory of abstract
mappings and their fixed points. Analogs of the Bellman equation, J* =
TJ*, optimality conditions, and other results and computational methods
hold for a great variety of DP models, and can be stated compactly as
described above in terms of the corresponding mappings 7}, and T. The
gain from this abstraction is greater generality and mathematical insight,
as well as a more unified, economical, and streamlined analysis.

ABSTRACT DYNAMIC PROGRAMMING MODELS

In this section we formally introduce and illustrate with examples an ab-
stract DP model, which embodies the ideas discussed in the preceding
section.

1.2.1 Problem Formulation

Let X and U be two sets, which we loosely refer to as a set of “states”
and a set of “controls,” respectively. For each z € X, let U(z) C U be a
nonempty subset of controls that are feasible at state . We denote by M
the set of all functions y : X — U with u(z) € U(z), for all z € X.

In analogy with DP, we refer to sequences m = {uo, p1,...}, with
ux € M for all k, as “nonstationary policies,” and we refer to a sequence
{p,p,...}, with u € M, as a “stationary policy.” In our development,
stationary policies will play a dominant role, and with slight abuse of ter-
minology, we will also refer to any p € M as a “policy” when confusion
cannot arise.

Let R(X) be the set of real-valued functions J : X — R, and let
H: X xU x R(X) — R be a given mapping. { For each policy u € M, we
consider the mapping 7T}, : R(X) — R(X) defined by

(T,J)(z) = H(z,n(x),J), VaeeX,JeRX)
and we also consider the mapping T' defined by I
(TJ)(z) = 15{ )H(z,u,J), VzelX,JeR(X).
uelU(z

1 Our notation and mathematical conventions are outlined in Appendix A.
In particular, we denote by R the set of real numbers, and by R™ the space of
n-dimensional vectors with real components.

1 We assume that H, T,J, and T'J are real-valued for J € R(X) in the
present chapter and in Chapter 2. In Chapters 3-5 we will allow H(z,u,J), and
hence also (T,J)(z) and (T'J)(z), to take the values co and —oo.
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Similar to the deterministic optimal control problem of the preceding
section, the mappings T, and T serve to define a multistage optimization
problem and a DP-like methodology for its solution. In particular, for some
function J € R(X), and nonstationary policy m = {uo, g1, ...}, we define
for each integer N > 1 the functions

Ju N () = (Tuo Ty - - Tuy_y J) (), z € X,

where T}o Ty, -+ Ty _, denotes the composition of the mappings T, T,
cois Tpupn_qs 1ee,

Tuon o 'TuN-lJ = (Tno (Tul ( o (T#N-z (TuN—l J))) o ))’ Je R(X)'

We view J, N as the “N-stage cost function” of 7 [cf. Eq. (1.5)]. Consider
also the function

Jx(x) = limsup Jy n(z) = imsup(Tue Ty, -+ Tun_, J)(2), z € X,
N—-oo

N—oo

which we view as the “infinite horizon cost function” of 7 [cf. Eq. (1.7); we
use limsup for generality, since we are not assured that the limit exists].
We want to minimize J, over 7, i.e., to find

J*(z) = inf J (), z € X,

and a policy 7* that attains the infimum, if one exists.
The key connection with fixed point methodology is that J* “typi-
cally” (under mild assumptions) can be shown to satisfy

J*(z) = inf H(z,u,J"), VzrelX,
ueU(z)

i.e., it is a fixed point of T'. We refer to this as Bellman’s equation [cf. Eq.
(1.3)]. Another fact is that if an optimal policy 7* exists, it “typically” can
be selected to be stationary, 7* = {u*, u*,...}, with u* € M satisfying an
optimality condition, such as for example

TypeJ* =TJ"

[cf. Eq. (1.4)]. Several other results of an analytical or algorithmic nature
also hold under appropriate conditions, which will be discussed in detail
later.

However, Bellman’s equation and other related results may not hold
without 7}, and T having some special structural properties. Prominent
among these are a monotonicity assumption that typically holds in DP
problems, and a contraction assumption that holds for some important
classes of problems.



