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PREFACE

This, the seventh edition of Mathematical Methods for Physicists, maintains the tradition
set by the six previous editions and continues to have as its objective the presentation of all
the mathematical methods that aspiring scientists and engineers are likely to encounter as
students and beginning researchers. While the organization of this edition differs in some
respects from that of its predecessors, the presentation style remains the same: Proofs are
sketched for almost all the mathematical relations introduced in the book, and they are
accompanied by examples that illustrate how the mathematics applies to real-world physics
problems. Large numbers of exercises provide opportunities for the student to develop skill
in the use of the mathematical concepts and also show a wide variety of contexts in which
the mathematics is of practical use in physics.

As in the previous editions, the mathematical proofs are not what a mathematician would
consider rigorous, but they nevertheless convey the essence of the ideas involved, and also
provide some understanding of the conditions and limitations associated with the rela-
tionships under study. No attempt has been made to maximize generality or minimize the
conditions necessary to establish the mathematical formulas, but in general the reader is
warned of limitations that are likely to be relevant to use of the mathematics in physics
contexts.

TO THE STUDENT

The mathematics presented in this book is of no use if it cannot be applied with some skill,
and the development of that skill cannot be acquired passively, e.g., by simply reading the
text and understanding what is written, or even by listening attentively to presentations
by your instructor. Your passive understanding needs to be supplemented by experience
in using the concepts, in deciding how to convert expressions into useful forms, and in
developing strategies for solving problems. A considerable body of background knowledge

xi
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Preface

needs to be built up so as to have relevant mathematical tools at hand and to gain experi-
ence in their use. This can only happen through the solving of problems, and it is for this
reason that the text includes nearly 1400 exercises, many with answers (but not methods
of solution). If you are using this book for self-study, or if your instructor does not assign
a considerable number of problems, you would be well advised to work on the exercises
until you are able to solve a reasonable fraction of them.

This book can help you to learn about mathematical methods that are important in
physics, as well as serve as a reference throughout and beyond your time as a student.
It has been updated to make it relevant for many years to come.

WHAT’S NEwW

This seventh edition is a substantial and detailed revision of its predecessor; every word of
the text has been examined and its appropriacy and that of its placement has been consid-
ered. The main features of the revision are: (1) An improved order of topics so as to reduce
the need to use concepts before they have been presented and discussed. (2) An introduc-
tory chapter containing material that well-prepared students might be presumed to know
and which will be relied on (without much comment) in later chapters, thereby reducing
redundancy in the text; this organizational feature also permits students with weaker back-
grounds to get themselves ready for the rest of the book. (3) A strengthened presentation of
topics whose importance and relevance has increased in recent years; in this category are
the chapters on vector spaces, Green’s functions, and angular momentum, and the inclu-
sion of the dilogarithm among the special functions treated. (4) More detailed discussion
of complex integration to enable the development of increased skill in using this extremely
important tool. (5) Improvement in the correlation of exercises with the exposition in the
text, and the addition of 271 new exercises where they were deemed needed. (6) Addition
of a few steps to derivations that students found difficult to follow. We do not subscribe
to the precept that “advanced” means “compressed” or “difficult.” Wherever the need has
been recognized, material has been rewritten to enhance clarity and ease of understanding.

In order to accommodate new and expanded features, it was necessary to remove or
reduce in emphasis some topics with significant constituencies. For the most part, the
material thereby deleted remains available to instructors and their students by virtue of
its inclusion in the on-line supplementary material for this text. On-line only are chapters
on Mathieu functions, on nonlinear methods and chaos, and a new chapter on periodic sys-
tems. These are complete and newly revised chapters, with examples and exercises, and
are fully ready for use by students and their instuctors. Because there seems to be a sig-
nificant population of instructors who wish to use material on infinite series in much the
same organizational pattern as in the sixth edition, that material (largely the same as in
the print edition, but not all in one place) has been collected into an on-line infinite series
chapter that provides this material in a single unit. The on-line material can be accessed at
www.elsevierdirect.com.



Preface xiii
PATHWAYS THROUGH THE MATERIAL

This book contains more material than an instructor can expect to cover, even in a
two-semester course. The material not used for instruction remains available for reference
purposes or when needed for specific projects. For use with less fully prepared students,
a typical semester course might use Chapters 1 to 3, maybe part of Chapter 4, certainly
Chapters 5 to 7, and at least part of Chapter 11. A standard graduate one-semester course
might have the material in Chapters 1 to 3 as prerequisite, would cover at least part of
Chapter 4, all of Chapters 5 through 9, Chapter 11, and as much of Chapters 12 through
16 and/or 18 as time permits. A full-year course at the graduate level might supplement
the foregoing with several additional chapters, almost certainly including Chapter 20 (and
Chapter 19 if not already familiar to the students), with the actual choice dependent on
the institution’s overall graduate curriculum. Once Chapters 1 to 3, 5 to 9, and 11 have
been covered or their contents are known to the students, most selections from the remain-
ing chapters should be reasonably accessible to students. It would be wise, however, to
include Chapters 15 and 16 if Chapter 17 is selected.
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CHAPTER 1

MATHEMATICAL
PRELIMINARIES

This introductory chapter surveys a number of mathematical techniques that are needed
throughout the book. Some of the topics (e.g., complex variables) are treated in more detail
in later chapters, and the short survey of special functions in this chapter is supplemented
by extensive later discussion of those of particular importance in physics (e.g., Bessel func-
tions). A later chapter on miscellaneous mathematical topics deals with material requiring
more background than is assumed at this point. The reader may note that the Additional
Readings at the end of this chapter include a number of general references on mathemati-
cal methods, some of which are more advanced or comprehensive than the material to be
found in this book.

1.1 INFINITE SERIES

Perhaps the most widely used technique in the physicist’s toolbox is the use of infinite
series (i.e., sums consisting formally of an infinite number of terms) to represent functions,
to bring them to forms facilitating further analysis, or even as a prelude to numerical eval-
uation. The acquisition of skill in creating and manipulating series expansions is therefore
an absolutely essential part of the training of one who seeks competence in the mathemat-
ical methods of physics, and it is therefore the first topic in this text. An important part of
this skill set is the ability to recognize the functions represented by commonly encountered
expansions, and it is also of importance to understand issues related to the convergence of
infinite series.



2 Chapter 1 Mathematical Preliminaries
Fundamental Concepts

The usual way of assigning a meaning to the sum of an infinite number of terms is by
introducing the notion of partial sums. If we have an infinite sequence of terms u, ua, u3,
ug, us, ..., we define the ith partial sum as

i
=3 Wy (1.1)
n=I
This is a finite summation and offers no difficulties. If the partial sums s; converge to a
finite limit as i — oo,
lim s; =S, (1.2)

1—00

the infinite series Zﬁc’:] uy is said to be convergent and to have the value S. Note that
we define the infinite series as equal to S and that a necessary condition for convergence
to a limit is that lim,_, », , = 0. This condition, however, is not sufficient to guarantee
convergence.

Sometimes it is convenient to apply the condition in Eq. (1.2) in a form called the
Cauchy criterion, namely that for each & > 0 there is a fixed number N such that
|sj —si| <& forall i and j greater than N. This means that the partial sums must cluster
together as we move far out in the sequence.

Some series diverge, meaning that the sequence of partial sums approaches 1-00; others
may have partial sums that oscillate between two values, as for example,

oo

Dtp=l—T4l—l4l—cem (=) +---.

n=1
This series does not converge to a limit, and can be called oscillatory. Often the term
divergent is extended to include oscillatory series as well. It is important to be able to
determine whether, or under what conditions, a series we would like to use is convergent.

Example 1.1.1  THe GEOMETRIC SERIES

The geometric series, starting with ug = 1 and with a ratio of successive terms r =
Up+1/Un, has the form

I+r+ri+r 44
Its nth partial sum s, (that of the first n terms) is'
1 —r"

1—=7"

(1.3)

Sn =

Restricting attention to |r| < 1, so that for large n, r" approaches zero, and s, possesses
the limit

s (1.4)

1
lim s, =
n—o00 1 —r

'Multiply and divide s, = Y- r" by | — 7.



1.1 Infinite Series 3

showing that for |r| < 1, the geometric series converges. It clearly diverges (or is oscilla-
tory) for |r| > 1, as the individual terms do not then approach zero at large n. ]

Example 1.1.2  THe HARMONIC SERIES

As a second and more involved example, we consider the harmonic series

= 1 [ T I

S T H P R 1.5
Zn +2+3+4+ +n+ (e
n=1

The terms approach zero for large n, i.e., lim,_ o 1/n = 0, but this is not sufficient to

guarantee convergence. If we group the terms (without changing their order) as

l+1+ l+l-{-1+]-i—l-l—]+l-+- +l +
2 3 4 5 6 7 8 9 16 '
cach pair of parentheses encloses p terms of the form

1 1 | p 1
_p+1+ >

e o e e e
p+2 p+p 2p 2
Forming partial sums by adding the parenthetical groups one by one, we obtain

3 4 5 n+1
s1=1, Sz:i’ 53>§. 54>E ..... Sp > 5

and we are forced to the conclusion that the harmonic series diverges.

Although the harmonic series diverges, its partial sums have relevance among other
places in number theory, where H, =Y _, m~" are sometimes referred to as harmonic
numbers. |

We now turn to a more detailed study of the convergence and divergence of series,
considering here series of positive terms. Series with terms of both signs are treated later.

Comparison Test

If term by term a series of terms u,, satisfies 0 < u,, < a,, where the a,, form a convergent
series, then the series ), u, is also convergent. Letting s; and s; be partial sums of the
u series, with j > i, the difference s; — s; is Z:jzzi+1 iy, and this is smaller than the
corresponding quantity for the a series, thereby proving convergence. A similar argument
shows that if term by term a series of terms v, satisfies 0 < b, < v,, where the b, form a
divergent series, then ), v, is also divergent.

For the convergent series a, we already have the geometric series, whereas the harmonic
series will serve as the divergent comparison series b,. As other series are identified as
either convergent or divergent, they may also be used as the known series for comparison
tests.



