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PREFACE

Over the years, 1 have developed a familiarity with this book in its various
editions, having learned from it, referred to it, and taught from it. The second
edition was used in my first electromagnetics course as a junior during the early
"10’s. Its simple and easy-to-read style convinced me that this material could be
learned, and it helped to confirm my latent belief at the time that my specialty
would lie in this direction. Later, it was not surprising to see my own students
coming to me with heavily-marked copies, asking for help on the drill problems,
and taking a more active interest in the subject than I usually observed. So, when
approached to be the new co-author, and asked what I would do to change the
book, my initial feeling was—nothing. Further reflection brought to mind earlier
wishes for more material on waves and transmission lines. As a result, Chapters |
to 10 are original, while 11 to 14 have been revised, and contain new material.
A conversation with Bill Hayt at the project’s beginning promised the start
of what I thought would be a good working relationship. The rapport was
immediate. His declining health prevented his active participation, but we
seemed to be in general agreement on the approach to a revision. Although 1
barely knew him, his death, occurring a short time later, deeply affected me in the
sense that someone that I greatly respected was gone, along with the promise of a
good friendship. My approach to the revision has been as if he were still here. In
the front of my mind was the wish to write and incorporate the new material in a
manner that he would have approved, and which would have been consistent
with the original objectives and theme of the text. Much more could have been
done, but at the risk of losing the book’s identity and possibly its appeal.
Before their deaths, Bill Hayt and Jack Kemmerly completed an entirely
new set of drill problems and end-of-chapter problems for the existing material at
that time, up to and including the transmission lines chapter. These have been
incorporated, along with my own problems that pertain to the new topics. The
other revisions are summarized as follows: The original chapter on plane waves
has now become two. The first (Chapter 11) is concerned with the development
of the uniform plane wave and the treatment wave propagation in various media.
These include lossy materials, where propagation and loss are now modeled in a
general way using the complex permittivity. Conductive media are presented as
special cases, as are materials that exhibit electronic or molecular resonances. A
new appendix provides background on resonant media. A new section on wave
polarization is also included. Chapter 12 deals with wave reflection at single and
multiple interfaces, and at oblique incidence angles. An additional section on
dispersive media has been added, which introduces the concepts of group velo-
city and group dispersion. The effect of pulse broadening arising from group
dispersion is treated at an elementary level. Chapter 13 is essentially the old
transmission lines chapter, but with a new section on transients. Chapter 14 is
intended as an introduction to waveguides and antennas, in which the underlying

xi
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PREFACE

physical concepts are emphasized. The waveguide sections are ail new, but the
antennas treatment is that of the previous editions.

The approach taken in the new material, as was true in the original work, is
to emphasize physical understanding and problem-solving skills. I have also
moved the work more in the direction of communications-oriented material,
as this seemed a logical way in which the book could evolve, given the material
that was already there. The perspective has been broadened by an expanded
emphasis toward optics concepts and applications, which are presented along
with the more traditional lower-frequency discussions. This again seemed to be a
logical step, as the importance of optics and optical communications has
increased significantly since the earlier editions were published.

The theme of the text has not changed since the first edition of 1958. An
inductive approach is used that is consistent with the historical development. In
it, the experimental laws are presented as individual concepts that are later
unified in Maxwell’s equations. Apart from the first chapter on vector analysis,
the mathematical tools are introduced in the text on an as-needed basis.
Throughout every edition, as well as this one, the primary goal has been to
enable students to learn independently. Numerous examples, drill problems
(usually having multiple parts), and end-of-chapter problems are provided to
facilitate this. Answers to the drill problems are given below each problem.
Answers to selected end-of-chapter problems can be found on the internet at
www.mhhe.com/engcs/electrical/haytbuck. A solutions manual is also available.

The book contains more than enough material for a one-semester course.
As is evident, statics concepts are emphasized and occur first in the presentation.
In a course that places more emphasis on dynamics, the later chapters can be
reached earlier by omitting some or all of the material in Chapters 6 and 7, as
well as the later sections of Chapter 8. The transmission line treatment (Chapter
13) relies heavily on the plane wave development in Chapters 11 and 12. A mote
streamlined presentation of plane waves, leading to an earlier arrival at transmis-
sion lines, can be accomplished by omitting sections 11.5, 12.5, and 12.6. Chapter
14 is intended as an “advanced topics” chapter, in which the development of
waveguide and antenna concepts occurs through the application of the methods
learned in earlier chapters, thus helping to solidify that knowledge. It may also
serve as a bridge between the basic course and more advanced courses that
follow it.

I am deeply indebted to several people who provided much-needed feed-
back and assistance on the work. Glenn S. Smith, Georgia Tech, reviewed parts
of the manuscript and had many suggestions on the content and the philosophy
of the revision. Several outside reviewers pointed out errors and had excellent
suggestions for improving the presentation, most of which, within time limita-
tions, were taken. These include Madeleine Andrawis, South Dakota State
University, M. Yousif El-Ibiary, University of Oklahoma, Joel T. Johnson,
Ohio State University, David Kelley, Pennsylvania State University, Sharad R.
Laxpati, University of Illinois at Chicago, Masoud Mostafavi, San Jose State
University, Vladimir A. Rakov, University of Florida, Hussain Al-Rizzo, Sultan
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Qaboos University, Juri Silmberg, Ryerson Polytechnic University and Robert
M. Weikle II, University of Virginia. My editors at McGraw-Hill, Catherine
Fields, Michelle Flomenhoft, and Betsy Jones, provided excellent expertise and
support—particularly Michelle, who was almost in daily contact, and provided
immediate and knowledgeable answers to all questions and concerns. My see-
mingly odd conception of the cover illustration was brought into reality through
the graphics talents of Ms Diana Fouts at Georgia Tech. Finally, much is owed
to my wife and daughters for putting up with a part-time husband and father for
many a weekend.

John A. Buck
Atlanta, 2000



CHAPTER

]

VECTOR
ANALYSIS

Vector analysis is a mathematical subject which is much better taught by math-
ematicians than by engineers. Most junior and senior engineering students, how-
ever, have not had the time (or perhaps the inclination) to take a course in vector
analysis, although it is likely that many elementary vector concepts and opera-
tions were introduced in the calculus sequence. These fundamental concepts and
operations are covered in this chapter, and the time devoted to them now should
depend on past exposure.

The viewpoint here is also that of the engineer or physicist and not that of
the mathematician in that proofs are indicated rather than rigorously expounded
and the physical interpretation is stressed. It is easier for engineers to take a more
rigorous and complete course in the mathematics department after they have
been presented with a few physical pictures and applications.

It is possible to study electricity and magnetism without the use of vector
analysis, and some engineering students may have done so in a previous electrical
engineering or basic physics course. Carrying this elementary work a bit further,
however, soon leads to line-filling equations often composed of terms which all
look about the same. A quick glance at one of these long equations discloses little
of the physical nature of the equation and may even lead to slighting an old
friend.

Vector analysis is a mathematical shorthand. It has some new symbols,
some new rules, and a pitfall here and there like most new fields, and it demands
concentration, attention, and practice. The drill problems, first met at the end of
Sec. 1.4, should be considered an integral part of the text and should all be
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yvorkcd: They should not prove to be difficult if the material in the accompany-
ing section of the text has been thoroughly understood. It take a little longer to

“read” the chapter this way, but the investment in time will produce a surprising
interest.

1.1 SCALARS AND VECTORS

The term scalar refers to a quantity whose value may be represented by a single
(positive or negative) real number. The x, y, and z we used in basic algebra are
scalars, and the quantities they represent are scalars. If we speak of a body falling
a distance L in a time 7, or the temperature T at any point in a bowl of soup
whose coordinates are x, y, and z, then L, ¢, T, x, y, and z are all scalars. Other
scalar quantities are mass, density, pressure (but not force), volume, and volume
resistivity. Voltage is also a scalar quantity, although the complex representation
of a sinusoidal voltage, an artificial procedure, produces a complex scalar, or
phasor, which requires two real numbers for its representation, such as amplitude
and phase angle, or real part and imaginary part.

A vector quantity has both a magnitude' and a direction in space. We shall
be concerned with two- and three-dimensional spaces only, but vectors may be
defined in n-dimensional space in more advanced applications. Force, velocity,
acceleration, and a straight line from the positive to the negative terminal of a
storage battery are examples of vectors. Each quantity is characterized by both a
magnitude and a direction.

We shall be mostly concerned with scalar and vector fields. A field (scalar
or vector) may be defined mathematically as some function of that vector which
connects an arbitrary origin to a general point in space. We usually find it
possible to associate some physical effect with a field, such as the force on a
compass needle in the earth’s magnetic field, or the movement of smoke particles
in the field defined by the vector velocity of air in some region of space. Note that
the field concept invariably is related to a region. Some quantity is defined at
every point in a region. Both scalar fields and vector fields exist. The temperature
throughout the bowl of soup and the density at any point in the earth are
examples of scalar fields. The gravitational and magnetic fields of the earth,
the voltage gradient in a cable, and the temperature gradient in a soldering-
iron tip are examples of vector fields. The value of a field varies in general
with both position and time.

In this book, as in most others using vector notation, vectors will be indi-
cated by boldface type, for example, A. Scalars are printed in italic type, for
example, 4. When writing longhand or using a typewriter, it is customary to
draw a line or an arrow over a vector quantity to show its vector character.
(Caution: This is the first pitfall. Sloppy notation, such as the omission of the
line or arrow symbol for a vector, is the major cause of errors in vector analysis.)

| We adopt the convention that “magnitude” infers “absolute value”; the magnitude of any quantity is
therefore always positive.
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12 VECTOR ALGEBRA

With the definitions of vectors and vector fields now accomplished, we may
proceed to define the rules of vector arithmetic, vector algebra, and (later) of
vector calculus. Some of the rules will be similar to those of scalar algebra, some
will differ slightly, and some will be entirely new and strange. This is to be
expected, for a vector represents more information than does a scalar, and the
multiplication of two vectors, for example, will be more involved than the multi-
plication of two scalars.

The rules are those of a branch of mathematics which is firmly established.
Everyone “plays by the same rules,” and we, of course, are merely going to look
at and interpret these rules. However, it is enlightening to consider ourselves
pioneers in the field. We are making our own rules, and we can make any rules
we wish. The only requirement is that the rules be self-consistent. Of course, it
would be nice if the rules agreed with those of scalar algebra where possible, and
it would be even nicer if the rules enabled us to solve a few practical problems.

One should not fall into the trap of “algebra worship™ and believe that the
rules of college algebra were delivered unto man at the Creation. These rules are
merely self-consistent and extremely useful. There are other less familiar alge-
bras, however, with very different rules. In Boolean algebra the product AB can
be only unity or zero. Vector algebra has its own set of rules. and we must be
constantly on guard against the mental forces exerted by the more familiar rules
or scalar algebra.

Vectorial addition follows the parallelogram law, and this is easily, if inac-
curately, accomplished graphically. Fig. 1.1 shows the sum of two vectors, A and
B. It is easily seen that A + B = B+ A, or that vector addition obeys the com-
mutative law. Vector addition also obeys the associative law, :

A+(B+O=A+B)+C

Note that when a vector is drawn as an arrow of finite length, its location is
defined to be at the tail end of the arrow.

Coplanar vectors, or vectors lying in a common plane, such as those shown
in Fig. 1.1, which both lie in the plane of the paper, may also be added by
expressing each vector in terms of “horizontal” and “vertical” components
and adding the corresponding components.

Vectors in three dimensions may likewise be added by expressing the vec-
tors in terms of three components and adding the corresponding components.
Examples of this process of addition will be given after vector components are
discussed in Sec. 1.4.

The rule for the subtraction of vectors follows easily from that for addition,
for we may always express A —B as A+ (—B): the sign, or direction, of the
second vector is reversed, and this vector is then added to the first by the rule
for vector addition.

Vectors may be multiplied by scalars. The magnitude of the vector changes,
but its direction does not when the scalar is positive. although it reverses direc-

3
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FIGURE 1.1

Two vectors may be added graphically either by drawing both vectors from a common origin and
completing the paraliefogram or by beginning the second vector from the head of the first and completing
the triangle; either method is easily extended to three or more vectors.

tion when multiplied by a negative scalar. Multiplication of a vector by a scalar
also obeys the associative and distributive laws of algebra, leading to

r+sYA+B)=r{A+B)+s(A+B)=rA+rB+sA+sB

Division of a vector by a scalar is merely multiplication by the reciprocal of
that scalar.

The multiplication of a vector by a vector is discussed in Secs. 1.6 and 1.7.

Two vectors are said to be equal if their difference is zero, or A = B if
A—-B=0.

In our use of vector fields we shall always add and subtract vectors which
are defined at the same point. For example, the toral magnetic field about a small
horseshoe magnet will be shown to be the sum of the fields produced by the earth
and the permanent magnet; the total field at any point is the sum of the indivi-
dual fields at that point.

If we are not considering a vector field, however, we may add or subtract
vectors which are not defined at the same point. For example, the sum of the
gravitational force acting on a 150-1b, (pound-force) man at the North Pole and
that acting on a 175-1b, man at the South Pole may be obtained by shifting each
force vector to the South Pole before addition. The resultant is a force of 251b,
directed toward the center of the earth at the South Pole; if we wanted to be
difficult, we could just as well describe the force as 251b, directed away from the
center of the earth (or “upward™) at the North Pole.

1.3 THE CARTESIAN COORDINATE SYSTEM

In order to describe a vector accurately, some specific lengths, directions, angles,
projections, or components must be given. There are three simple methods of
doing this, and about eight or ten other methods which are useful in very special
cases. We are going to use only the three simple methods, and the simplest of
these is the cartesian, or rectangular, coordinate system.

2 A few students have argued that the force might be described at the equator as being in a “northerly”
direction. They are right, but enough is enough.
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In the cartesian coordinate system we set up three coordinate axes mutually
at right angles to each other, and call them the x, y, and z axes. It is customary to
choose a right-handed coordinate system, in which a rotation (through the smal-
ler angle) of the x axis into the y axis would cause a right-handed screw to
progress in the direction of the z axis. If the right hand is used, then the
thumb, forefinger, and middle finger may then be identified, respectively, as
the x, y, and z axes. Fig. 1.2a shows a right-handed cartesian coordinate system.

A point is located by giving its x, y, and z coordinates. These are, respec-
tively, the distances from the origin to the intersection of a perpendicular
dropped from the point to the x, y, and z axes. An alternative method of inter-
preting coordinate values, and a method corresponding to that which must be
used in all other coordinate systems, is to consider the point as being at the

t

x =0 plane
y = 0 plane
Origin
EVER B e ey -y
// z =0 plane
/,/

(a)

7

(b) (¢)

FIGURE 1.2 .

(a) A right-handed cartesian coordinate system. If the curved fingers of the right hand indicate the
direction through which the x axis is turned into coincidence with the y axis, the thumb shows the direction
of the z axis. (b) The location of points P(1,2,3) and 0Q(2, ~2.1). () The differential volume element in
cartesian coordinates; dx, dy, and dz are, in general, independent differentials.
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commeon intersection of three surfaces, the planes x = constant, y = constant,
and z = constant, the constants being the coordinate values of the point.

Fig. 1.2b shows the points P and @ whose coordinates are (1,2, 3) and
(2, =2, 1), respectively. Point P is therefore located at the common point of
intersection of the planes x = 1, y =2, and z = 3, while point Q is located at
the intersection of the planes x =2, y = -2, z = |.

As we encounter other coordinate systems in Secs. 1.8 and 1.9, we should
expect points to be located at the common intersection of three surfaces, not
necessarily planes, but still mutually perpendicular at the point of intersection.

If we visualize three planes intersecting at the general point P, whose coor-
dinates are x, y, and z, we may increase each coordinate value by a differential
amount and obtain three slightly displaced planes intersecting at point P’, whose
coordinates are x + dx, y +dy, and z + dz. The six planes define a rectangular
parallelepiped whose volume is dv = dxdydz; the surfaces have differential areas
dS of dxdy, dydz, and dzdx. Finally, the distance dL from P to P’ is the diagonal

of the parallelepiped and has a length of ‘/(Tz'x)z + (dy)* + (dz)*. The volume
element is shown in Fig. 1.2¢; point P’ is indicated, but point P is located at
the only invisible corner.

All this is familiar from trigonometry or solid geometry and as yet involves
only scalar quantities. We shall begin to describe vectors in terms of a coordinate
system in the next section.

1.4 VECTOR COMPONENTS AND UNIT
VECTORS

To describe a vector in the cartesian coordinate system, let us first consider a
vector r extending outward from the origin. A logical way to identify this vector
is by giving the three component vectors, lying along the three coordinate axes,
whose vector sum must be the given vector. If the component vectors of the
vector r are X, y, and z, then r = x +y -+ z. The component vectors are shown in
Fig. 1.3a. Instead of one vector, we now have three, but this is a step forward,
because the three vectors are of a very simple nature; each is always directed
along one of the coordinate axes.

In other words, the component vectors have magnitudes which depend on
the given vector (such as r above), but they each have a known and constant
direction. This suggests the use of unit vectors having unit magnitude, by defini-
tion, and directed along the coordinate axes in the direction of the increasing
coordinate values. We shall reserve the symbol a for a unit vector and identify
the direction of the unit vector by an appropriate subscript. Thus a, a,, and a;
are the unit vectors in the cartesian coordinate system.? They are directed along
the x, y, and z axes, respectively, as shown in Fig. 1.3b.

3The symbols i, j, and k are also commonly used for the unit vectors in cartesian coordinates.
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r=x+y+z x

(a) &)

02.,-2. 1

FIGURE 1.3

(a) The component vectors x, y, and z of vector r. (b) The unit vectors of the cartesian coordinate system
have unit magnitude and are directed toward increasing values of their respective variables. (¢) The vector
Ryp is equal to the vector difference ry —tp.

If the component vector y happens to be two units in magnitude and
directed toward increasing values of y, we should then write y = 2a,. A vector
rp pointing from the origin to point P(1, 2, 3) is written rp = a, + 2a, + 3a.. The
vector from P to Q may be obtained by applying the rule of vector addition. This
rule shows that the vector from the origin to P plus the vector from P to @ is
equal to the vector from the origin to Q. The desired vector from P(1,2, 3) to
0(2, -2, 1) is therefore

Rpp =rp —1p = (2 = Da+ (=2~ 2)a, + (1 — 3)a;

=a, —4a, —2a;

The vectors rp, ro, and Rpg are shown in Fig. 1.3¢c.



