FREREE « ZXETIEZRS

PEARSON

Addison
Wesley

Object Solutions
Managing the Object—Oriented Project

SIS

B k) it H
(W EIA)

[%] Grady Booch %

OBJECT
SOLUTIONS Rational & % #1%% Grady Booch ZB1{E 5 =
MANAGING THE

SRS Efct BT EFEEA R NTEH
GRADY BOOCH Ef’f’ﬁﬂﬁk, /F—EEE% ﬁl"ﬂﬁ(ﬁﬁ&’*g#%%’f -

———— . .

T
JRCOBSON
IIIHHIE){

Ex Ed_uﬂlgﬂ.i
= SRR '

ff@v@ﬁméu

www.infopower.com.cn

NERAR - XGETEREY

Object Solutions
Managing the Object—Oriented Project

SE I YIS
FRLE b RITH -
(B EMAR)

[&]Grady Booch #

TR AL H4 t

Object Solutions: Managing the Object-Oriented Project (ISBN 0-8053-0594-7)
Grady Booch

Copyright © 1996 Addison Wesley Longman, Inc.

Original English Language Edition Published by Addison Wesley longman, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA
ELECTRIC POWER PRESS, Copyright © 2003.

455 E)1 iR 81 Pearson Education AR E w7 AR H EEA GRil. BITFHITERXH
SR MANR. KIT.
R MR E LA, AR7LUUEANTXEHRPREBEUETHT .

A5 H WA Pearson Education Bithira, ThrgE AEHE.

IEETRRBERGRELS: BF: 01-2003-2436

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

MRFhEARCMEEN (REFFEES. BITEITRKATEGEMK) HERT.

EEERRSRE (CIP) ¥E

SRERTE—SHEMMNETE / (F) fift (Booch, G.) F. —BEE. —ItR: FEBAHR
#, 2003

(FRRRE - RETERID

ISBN 7-5083-1509-X

[1A [NLERBYRES-FKEFA-REEFE-XX V.TP311.52

h E AR A B $518 CIP B 7 (2003) 25 027885 5

RiEomk: BE

A B & FEAER - KETERT

B4 NEREFR—EEEANETE EEHRBO
% 3F: (3) Grady Booch

H %: pEBHHMT

sudt: bR =BT HIBZRS: 100044
Bi%: (010) 88515918 f5H: (010) 88423191
LR ENRI

BB h SRR RATR

787X1092 1/16 =1 g: 21.5
ISBN 7-5083-1509-X

20034E7 AL B

200347 A 58— IXENK

42.00 Jo

f&

=

BN
FTEXAANST

Preface

Early adopters of object-oriented technology took it on faith that object orienta-
tion was A Good Thing, offering hope for improving some ugly aspect of soft-
ware development. Some of these primordial efforts truly flourished, some
failed, but overall, a number of such projects quietly began to experience the
anticipated benefits of objects: better time to market, improved quality, greater
resilience to change, and increased levels of reuse. Of course, any new technol-
ogy is fun to play with for a short while. Indeed, there is a part of our industry
that thrives on embracing the latest fad in software development. However, the
real business case for any mature technology is that it delivers measurable and
sustainable benefits for real projects.

Object-oriented technology has demonstrated its value in a multitude of
applications around the world. I have seen object-oriented languages and
methods used successfully in such diverse problem domains as securities trad-
ing, medical electronics, enterprise-wide information management, air traffic
control, semiconductor manufacturing, interactive video gaming, telecommu-
nications network management, and astronomical research. Indeed, I can hon-
estly say that in every industrialized country and in every conceivable
application area, I have come across some use of object-oriented technology.
Object-oriented stuff is indisputably a part of the mainstream of computing.

There exists an ample and growing body of experience from projects that
have applied object-oriented technology. This experience ~ both good and bad
- is useful in guiding new projects. One important conclusion that I draw from
all such projects is that object-orientation can have a very positive impact upon
software development, but that a project requires much more than just an
object-oriented veneer to be successful. Programmers must not abandon sound
development principles all in the name of objects. Similarly, managers must
understand the subtle impact that objects have upon traditional practices.

SCOPE

In almost every project I have come across, be it a modest two- or three-person
effort, to undertakings of epic proportions wherein geopolitical issues domi-
nate, a common set of questions always appears: How do I transition my orga-
nization to object-oriented practices? What artifacts should I manage to retain

viii

Preface

control? How should I organize my staff? How do I measure the quality of the
software being produced? How can I reconcile the creative needs of my indi-
vidual programmers with management’s needs for stability and predictability?
Can object-orientation help me help my customers better articulate what they
really want? These are all reasonable questions, and their answers strike at the
heart of what is different and special about object-oriented technology.

This book serves to answer these and many other related questions, by offer-
ing pragmatic advice on the recommended practices and rules of thumb used
by successful projects.

This is not a theoretical book, nor is its purpose to explain all the dark cor-
ners of object-oriented analysis, design, and programming. My previous work,
Object-Oriented Analysis and Design with Applications, serves those purposes: it
examines the theoretical underpinnings of all things object-oriented, and offers
a comprehensive reference to a unified method of object-oriented analysis and
design.

Object Solutions provides a direct and balanced treatment on all the impor-
tant issues of managing object-oriented projects. I have been engaged in hun-
dreds of projects; this book draws upon that broad experience. My intent is to
explain what has worked, what has not, and how to distinguish between the
two.

AUDIENCE

My intended audience includes project managers and senior programmers
who want to apply object-oriented technology successfully to their projects,
while avoiding the common mistakes that can befall the unwary. Professional
programmers will find this book useful as well, giving them insight into the
larger issues of turning cool looking object-oriented code into real products;
this book will also help to explain why. their managers do what they do. Stu-
dents on their way to becoming professional programmers will come to under-
stand why software development is often not very tidy in the real world, and
how industrial-strength projects cope with this disorder.

ORGANIZATION

I have organized this book according to the various functional aspects of man-
aging an object-oriented project. As such, it can either be read from cover to
cover or selectively by topic. To make this material more accessible, my general
style is to present an issue, discuss its implications, and then offer some recom-

Preface ix

mended practices and rules of thumb. To distinguish these elements in the text,
I use the following typographic conventions:

This is an issue, usually stated in the form of a question followed by its
answer, regarding some functional area of project management.

This is a recommended practice, which represents a generally accept-
able way of addressing a given issue.

This is a rule of thumb, which represents some guantifiable measure
about a particular practice.

I’'ve numbered these practices and rules sequentially, so that specific ones
can be referred to easily.

To reinforce certain lessons, I offer examples drawn from a variety of pro-
duction object-oriented projects, whose details have been changed to protect
the guilty. I highlight these examples in the following manner:

This is an example, drawn from some production object-oriented project.

ACKNOWLEDGMENTS

As a compendium of object-oriented wisdom, Object Solutions owes an enor-
mous debt to the many professional managers and programmers whose contri-
butions have advanced the state of the practice in object-oriented technology.

The following individuals deserve a special mention for reviewing my work
in progress, and providing me with many useful comments and suggestions:
Gregory Adams, Glen Andert, Andrew Baer, Dave Bernstein, Mike Dalpee, Rob
Daly, Mike Devlin, Richard Dué, Jim Gillespie, Jim Hamilton, Larry Hartweg,
Philippe Kruchten, Brian Lyons, Joe Marasco, Sue Mickel, Frank Pappas, Jim
Purtilo, Rich Reitman, Walker Royce, Dave Tropeano, Mike Weeks, and Dr. Wil-
liam Wright. :

A special thanks goes to my wife, Jan, for keeping me sane during the devel-
opment of yet another book, and who always gently shows me that there is a
rich life beyond all things object-oriented. '

R#

Contents

CHAPTER 1: FIRST PRINCIPLES 1

When Bad Things Happen to Good Projects 5
Establishing a Project’s Focus 9

Understanding a Project’s Culture 11

The Five Habits of Successful Object-Oriented Projects 22
Issues in Managing Object-Oriented Projects 29

CHAPTER 2: PRODUCTS AND PROCESS 33

In Search of Excellent Objects 37
Object-Oriented Architectures 43

The Artifacts of a Software Project 54
Establishing a Rational Design Process 63

CHAPTER 3: THE MACRO PROCESS 69

The One-Minute Methodology 74
Conceptualization 80

Analysis 86

Design 108

Evolution 129

Maintenance 151

CHAPTER 4: THE MICRO PROCESS 155

I’'m OK, My Program’s OK 159

Identifying Classes and Objects 161

Identifying the Semantics of Classes and Objects 167
Identifying Relationships Among Classes and Objects 174
Implementing Classes and Objects 181

xii Contents

CHAPTER 5: THE DEVELOPMENT TEAM 185

Managers Who Hate Programmers, and the Programmers
Who Work For Them 191

Roles and Responsibilities 194

Resource Allocation 206

Technology Transfer 212

Tools for the Worker 219

CHAPTER 6: MANAGEMENT AND PLANNING 225
Everything I Need to Know I'll Learn In My Next Project 229
Managing Risk 231

Planning and Scheduling 233

Costing and Staffing 236

Monitoring, Measuring, and Testing 237

Documenting 239

Projects in Crisis 244

CHAPTER 7: SPECIAL TOPICS 247

What They Don’t Teach You in Programming Class 252
User-centric Systems 254

Data-centric Systems 257

Computation-centric Systems 260

Distributed Systems 262

Legacy Systems 265

Information Management Systems 267

Real Time Systems 270

Frameworks 274

EPILOGUE 277

SUMMARY OF RECOMMENDED PRACTICES 279
SUMMARY OF RULES OF THUMB 293
GLOSSARY 303

BIBLIOGRAPHY 307

INDEX 311

Chapter 1

First Principles

Chapter 1

First Principles

Nature uses only the longest threads to weauve her pattern, so each small
piece of the fabric reveals the organization of the entire tapestry.
RICHARD FEYNMAN

4 Object Solutions: Managing the Object-Oriented Project

First, some good news.

From the perspective of the software developer, we live in very interesting
times. Consider all the software behind many of the activities that we take for
granted in an industrialized society: making a phone call, buying shares in a
mutual fund, driving a car, watching a movie, having a medical examination.
Sophisticated software is already pervasive, and the fact that it continues to
weave itself deeply into the fabric of society creates an insatiable demand for
creative architects, abstractionists, and implementers.

Now, some bad news. It is not radical to predict that future software will be
evolutionarily more complex. Indeed, two dominant forces drive this trend: the
increased connectivity of distributed, high-performance computing systems
and greater user expectations for better visualization of and access to informa-
tion. The first force—increased connectivity—is made possible by the emer-
gence of increasingly high-bandwidth conduits of information and is made
practical by economies of scale. The second force—greater user expectations—
is largely a consequence of the Nintendo generation that is socially aware of the
creative possibilities of automation. Under the influences of both forces, it is
reasonable for a consumer to expect that a movie ordered over cable television
can be billed directly to his or her bank account. It is reasonable for a scientist
to expect on-line access to information in distant laboratories. It is reasonable
for an architect to expect the ability to walk through a virtual blueprint created
by remote collaborators. It is reasonable for a player to interact with a game
whose images are virtually indistinguishable from reality. It is reasonable for a
retail business to expect there to be no seams in its mission-critical systems,
connecting the event of a customer buying an item to the activities of the com-
pany’s buyers (who react to rapidly changing consumer tastes) as well as to the
activities of the company’s marketing organization (which must target new
offerings to increasingly specialized groups of consumers). The places where
we find seams in such systems, those times when users ask “why can’t I do x,”
hint at the fact that we have not yet mastered the complexity of a particular
domain.

Even if we ignore the substantial amount of resources already being spent
on software maintenance, the world’s current supply of software developers
would easily be consumed just by the activities of writing software that derive
from the natural consequences of these two simple forces. If we add to this
equation the largely unproductive tasks of coping with the microprocessor
wars, the operating system wars, the programming language wars, and even
the methodology wars, we find that scant resources are left to spend on discov-
ering and inventing the next class of so-called “killer” applications. Ultimately,
every computer user suffers.

On the positive side, however, software development today is far less con-
strained by hardware. Compared to a decade ago, many applications operate
in a world of abundant MIPS, excess memory, and cheap connectivity. Of

Chapter 1: First Principles 5

course, there are two sides to this blessing. On the one hand, this means that
our hardware must no longer dramatically shape the software architectures
that we craft. On the other hand, this embarrassment of riches tends to encour-
age an appetite for software than will never be satiated.

Thus, we are faced with a simple but fundamental truth:

Our ability to imagine complex applications will always exceed our abil-
ity to develop them.

Actually, this is the most positive of situations: the demands of our imagina-
tion drive us continually to improve the ways in which we craft our software.

WHEN BAD THINGS HAPPEN TO GOOD PROJECTS

Most software projects start out for all the right reasons: to fill a market need, to
provide certain much-needed functionality to a group of end users, to explore
some wild theory. For many, writing software is a necessary and unavoidable
part of their business, in other words, a secondary concern. A bank is in the
business of managing money, not managing software, although software is an
essential means to that end. A retail company achieves a competitive advan-
tage in manufacturing and distribution through its software, although its pri-
mary business might be providing consumers with the latest fashions in
clothes. For other people, writing software is their life, their passion, their joy,
something they do while others focus on more mundane problems. In either
case, developing software is something that consumes time and significant
intellectual energy.

Why do some software projects fail? Most often, it is because of:
¢ A failure to properly manage the risks
* Building the wrong thing
* Being blindsided by technology

Unfortunately, as the work of a team unfolds, more than a few pro;ects lose
their way. Many projects fail because of a lack of adult supervision. * Increas-

* I don’t mean to sound condescending. It is not that such projects fail because of poor manage-
ment; rather, they fail because of no management.

6 Object Solutions: Managing the Object-Oriented Project

ingly unrealistic schedules and plans are drawn up, cumulatively forming a
succession of lies, with no one having the nerve to stand up and acknowledge
reality. Petty empires form. Every problem is viewed as “a simple matter of
programming,” rather than as a reflection of a more systemic problem in the
system's architecture or the development process itself. The project’s direction
and activities are set by the most obnoxious people in the group, because it is
easier for management to let this group have its way than it is to make hard
decisions when problems arise. Unmanaged projects such as these eventually
enter into a “free fall” with no one taking responsibility and everyone waiting
for the impact. Usually, the most merciful thing to do in these circumstances is
to kill the project before it ruins everything in its path.

A company landed a major contract to supply a common suite of
development tools which would ultimately be used by a variety
of other contractors on a mission-critical space project. The com-
pany did a number of things right: it selected a seasoned archi-
tect, trained its people well, selected some good tools, and even
instrumented their project so that management could tune the
development process over time. However, once the project got
going, upper management essentially stepped back and let the
technologists on the project run amok. Free from the constraints
of any clear goals or firm schedules for incremental releases, the
programmers pursued what seemed to them some really cool,
albeit irrelevant, implementation issues. While the project’s man-
agers spent their time playing political games, the programmers
kept rolling forward their schedules, aided by the fact that there
was no internal pressure to deliver anything real. In the mean-
time, end users kept demanding certain high priority deliver-
ables, which were promptly brushed aside as things that would
eventually be completed once the team had finished building all
the necessary infrastructure. The testing team raised concerns
about performance, warning that the framework being crafted
would eventually collapse of its own sheer weight, once exposed
to the demands of real users. After burning several tens of million
dollars, the project was canceled, with hardly any deliverable
software to show for all its effort.

There is a simple lesson to be learned from this project’s demise:

Management must actively attack a project’s risks, otherwise they will
actively attack you.”

*Gilb, p. 73.

Chapter 1: First Principles 7

Quite often, projects lose their way because they go adrift in completely
uncharted territory. There is no shared vision of the problem being solved. The
team is clueless as to the final destination, and so it thrashes about, throwing its
scarce energies on what appear to be the most important technical tasks, which
often turn out to be of secondary concern once the end users finally see the
product. No one takes the time to validate what is being built with any end
users or domain experts. Occasionally, so-called analysts capture the essence of
the system’s real requirements, but for a number of political and social reasons,
that essence is never communicated to the people who must design and imple-
ment the system. A false sense of understanding pervades the project, and
everyone is surprised when users reject the delivered software that was so lov-
ingly crafted in a complete vacuum.

A company was selected to develop a large interstate traffic con-
trol system. Early sizing estimates suggested the need for several
hundred developers (in itself an early warning sign). Two new
buildings were erected, one to house the project’s analysts, and
the other to house the project’s designers and implementers. Not
surprisingly, these artificial physical boundaries introduced sig-
nificant amounts of noise in the communication of the user’s
requirements down to the level of the project’s programmers.
Memo wars raged, with analysts lobbing reports containing their
view of the problem over the walls to the poor, isolated design-
ers, who would from time to time fire back with reports of their
own. The project’s programmers were rarely exposed to any real
end users; they were too busy coding, and besides, as the
project’s culture dictated it was thought that most of its program-
mers would not know how to deal with users anyway. As time
unfolded and the project’s real requirements became clear, there
was considerable delay in communicating these changing needs
from the users through the analysts to the designers, resulting in
significant schedule slips as well as much broken glass in the cus-
tomer/vendor relationship.

The experience from this project, and too many others like it, prompts the
following recommended practice:

involve real users throughout the software development process; their
presence is a constant reminder why and for whom the software is
being crafted.

Occasionally, projects fail because they are blindsided by the very technol-
ogy being employed to build the software itself. Tools break at the most inop-

8 Object Solutions: Managing the Object-Oriented Project

portune moménts, 1dtking the capacity to handle the project’s exponentially
increasing complexity. From time to time, the project’s tools prove to be just
plain erroneous, requiring programmers to perform unnatural acts to get
around these limitations. Third-party software suppliers sometimes do not
deliver what they originally promised; often some expected functionality is
lacking, or performance is less than expected. In the worst of all possible sce-
narios, the supplier simply goes out of business, leaving the project totally
exposed. Technology backlash happens most often when forces in the market-
place, beyond a project’s local control, change the technology rules out from
under it: a hardware platform vendor stops making a product, operating sys-
tem interfaces and features are changed by their supplier faster than the project
can meaningfully keep up, end user’s tastes change and their expectations rise
because of some other really neat program one of them recently saw mentioned
in the latest trade magazine (even though that product later proved to be
vaporware). Although the latest language/tool/method selected by a project
might promise real benefits, extracting those benefits is usually much harder
than it first appears. When blindsided by technology, there usually are not
enough programming hours in the day to recover, without reducing the func-
tionality of the system the project had promised to deliver. Ultimately, this is all
very embarrassing for a software development organization: as professionals,
the last thing to expect is for your own technology to turn on you.

A securities trading company made a significant investment in
object-oriented stuff, buying the latest brand workstations and
programming tools for all its developers. Shortly thereafter, the
workstation vendor decided that it really was a software company
after all, and so it stopped making any more of its hardware.

Too often, problems with the underlying technology take the blame for a
project’s failure when the real culprit is really non-technical, namely, the lack of
active management that should have anticipated and planned contingencies
for the technical risk in the first place. Still, we do not live in a perfect world,
and thus:

Where possible, do not bind your project to any single-source technol-
ogy, but if you must (such as when that technology offers some compel-
ling advantage even in the face of its risk), build firewalls into your
architecture and process so that your project will not unravel even if the
technology does.

Chapter 1: First Principles 9

ESTABLISHING A PROJECT'S FOCUS

Despite these three failure modes, many software projects that start out for all
the right reasons really do achieve at least some modest amount of success.
However, even the most successful projects seem to take longer, involve more
intellectual effort, and require more crisis management than we really believe
they ever should. Unfortunately, as Parnas suggests, we can never have a com-
pletely rational development process because:”

* A system’s users typically do not know exactly what they want and are
unable to articulate all that they do know.

¢ Even if we could state all of a system’s requirements, there are many
details about a system that we can only discover once we are well into its
implementation.

e Even if we knew all of these details, there are fundamental limits to the
amount of complexity that humans can master.

¢ Even if we could master all this complexity, there are external forces, far
beyond a project’s control, that lead to changes in requirements, some of
which may invalidate earlier decisions.

e Systems built by humans are always subject to human error.

o As we embark on each new project, we bring with us the intellectual bag- .
gage of ideas from earlier designs as well as the economic baggage of
existing software, both of which shape our decisions independent of a
system'’s real requirements.

Parnas goes on to observe that “For all of these reasons, the picture of the
software designer deriving his design in a rational, error-free way from a state-
ment of requirements is quite unrealistic.” Fortunately, as Parnas observes, and
as I'll discuss further in the next chapter, it is possible, and indeed desirable, to
fake it. In one way or another, establishing the semblance of a rational design
process is exactly what every successful project has to do.

Every successful project also entails the making of a plethora of technical
decisions. Some of these decisions have sweeping implications for the system
under construction, such as the decision to use a certain client/server topology,
the decision to use a particular windowing framework, or the decision to use a
relational database. These I call strategic decisions, because each denotes a fun-
damental architectural pattern. Other decisions are much more local in nature,
such as the decision to use a particular programming idiom for iteration, the
decisions that shape the interface of an individual class, or the decision to usea
specific vendor’s relational database. These I call factical decisions. Together,

* Parnas, p. 251.

