AR - N TIERT

Agile Software Development

Principles, Patterns, and Practices

BB F I K&

(S EAR )

[ = ]Robert C. Martin Z

BPFIEA RV PN DL LA

Refactoring =% Martin Fowler 4> Jifity =

VR WL SRS B U R T BBy Tl
T 1 rli(‘,.‘Mart’i'ﬁi
James W. Newkirk 22{ Robert S. Knss

163 @ 4 % ey

www.infopower.com.cn




NEAR - ETEZRS

Agile Software Development

Principles, Patterns, and Practices

BRI R
(R ERAR )

[ % ] Robert C. Martin ¥

T DR A L L



Agile Software
Development

Principles, Patterns, and Practices

Robert Cecil Martin



Agile Software Development :Principles,Patterns,and Practices(ISBN 0-13-597444-5)
Robert C. Martin

Copyright © 2003 Pearson Education, Inc.

Original English Language Edition Published by Pearson Education, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2003.

A FREIRRK i Pearson Education AU B JHRH AP EER (Fi. RITEHITRE A4S
XERSM) MFMIR. KAT.
REHRE BEFA, ABUMEMTXRHRDREBIEMAETES .

B H A Pearson Education BVOVRRS, ARt
IERTREEAESFEZIZS: B 01-2003-1019

BHENSE (CiP) ¥iE .
BHERHFR/ () BTE. —BEEX. —dbw. FEEHHRY, 20035
(FBRRE « KETERFD

ISBN 7-5083-1503-0

[.&. I.3. IL¥4EFER-—-EX IV.TP311.52

rh B AR < B 1518 CIP $dE & # (2003) 28 027801 5

HAEE: FEEHHEH (ERERK =8B 65, HEgm 100044)

http://www.infopower.com.cn

WERS: PR

A H & RERE - RELERY

& BEKHITR OB

% F: (3) Robert C. Martin

H & #F: FEEHHER]
Mk LRSS ETEECS  HEEGRED: 100044
Hi%: (010) 88515918 f£H: (010) 88423191

2 ICEEEN B H PR 7] ENR

: RS BEIL R RATHR

: 787%X1092 1/16 B #: 35

: ISBN 7-5083-1503-0

1 2003F7 AR E IR

: 200347 B —IRETRI

: 59.00 J©

SN M S



Foreword

I’m writing this foreword right after having shipped a major release of the Eclipse open source project. I'm still in
recovery mode, and my mind is bleary. But one thing remains clearer than ever: that people, not processes, are the
key to shipping a product. Our recipe for success is simple: work with individuals obsessed with shipping soft-
ware, develop with lightweight processes that are tuned to each team, and adapt constantly.

Double-clicking on developers from our teams reveals individuals who consider programming the focus of
development. Not only do they write code; they digest it constantly to maintain an understanding of the system.
Validating designs with code provides feedback that’s crucial for getting confidence in a design. At the same time,
our developers understand the importance of patterns, refactoring, testing, incremental delivery, frequent builds,
and other best-practices of XP that have altered the way we view methodologies today.

Skill in this style of development is a prerequisite for success in projects with high technical risk and chang-
ing requirements. Agile development is low-key on ceremony and project documentation, but it's intense when it
comes to the day-to-day development practices that count. Putting these practices to work is the focus of this book.

Robert is a longtime activist in the object-oriented community, with contributions to C++ practice, design
patterns, and object-oriented design principles in general. He was an early and vocal advocate of XP and agile
methods. This book builds on these contributions, covering the full spectrum of agile development practice. It's an
ambitious effort. Robert makes it more so by demonstrating everything through case studies and lots of code, as
befits agile practice. He explains programming and design by actually doing it.

This book is crammed with sensible advice for software development. It’s equally good whether you want
to become an agile developer or improve the skills you already have. I was looking forward to this book, and 1
wasn’t disappointed.

Erich Gamma
Object Technology International

For Ann Marie, Angela, Micah, Gina, Justin, Angelique, Matt, and Alexis . . .

There is no greater treasure,
Nor any wealthier trove,
Than the company of my family,
And the comfort of their love.

i



Preface

But Bob, you said you'd be done with the book last year.

—~Claudia Frers, UML World, 1999

Agile development is the ability to develop software quickly, in the face of rapidly changing requirements. In order
to achieve this agility, we need to employ practices that provide the necessary discipline and feedback. We need to
employ design principles that keep our software flexible and maintainable, and we need to know the design pat-
terns that have been shown to balance those principles for specific problems. This book is an attempt to knit all
three of these concepts together into a functioning whole.

This book describes those principles, patterns, and practices and then demonstrates, how they are applied by
walking through dozens of different case studies. More importantly, the case studies are not presented as complete
works. Rather, they are designs in progress. You will see the designers make mistakes, and you will observe how
they identify the mistakes and eventually correct them. You will see them puzzle over conundrums and worry over
ambiguities and trade-offs. You will see the act of design.

The Devil Is in the Details

This book contains a lot of Java and C++ code. I hope you will carefully read that code since, to
a large degree, the code is the point of the book. The code is the actualization of what this book
has to say.

There is a repeating pattern to this book. It consists of a series of case studies of varying sizes.
Some are very small, and some require several chapters to describe. Each case study is preceded by
material that is meant to prepare you for it. For example, the Payroll case study is preceded by chap-
ters describing the object-oriented design principles and patterns used in the case study.

The book begins with a discussion of development practices and processes. That discussion is punctuated by
a number of small case studies and examples. From there, the book moves on to the topic of design and design
principles, and then to some design patterns, more design principles that govern packages, and more patterns. All
of these topics are accompanied by case studies.




Preface v

So prepare yourself to read some code and to pore over some UML diagrams. The book you are about to
read is very technical, and its lessons, like the devil, are in the details.

A Little History
Over six years ago, I wrote a book entitled Designing Object-Oriented C++ Applications using the Booch Method.
It was something of magnum opus for me, and I was very pleased with the result and with the sales.

This book started out as a second edition to Designing, but that’s not how it turned out. Very little remains of
the original book in these pages. Little more than three chapters have been carried through, and those chapters
have been massively changed. The intent, spirit, and many of the lessons of the book are the same. And yet, I've
learned a tremendous amount about software design and development in the six years since Designing came out.
This book reflects that learning,.

What a half-decade! Designing came out just before the Internet collided with the planet. Since then, the
number of abbreviations we have to deal with has doubled. We have Design Patterns, Java, EJB, RMI, J2EE,
XML, XSLT, HTML, ASP, JSP, Servlets, Application Servers, ZOPE, SOAP, C#, .NET, etc., etc. Let me tell you,
it’s been hard to keep the chapters of this book reasonably current!

The Booch Connection
In 1997, I was approached by Grady Booch to help write the third edition of his amazingly successful Object-
Oriented Analysis and Design with Applications. 1 had worked with Grady before on some projects, and I had been
an avid reader and contributor to his various works, including UML. So I accepted with glee. I asked my good
friend Jim Newkirk to help out with the project. ' ‘

Over the next two years, Jim and I wrote a number of chapters for the Booch book. Of course, that effort
meant that I could not put as much effort into this book as I would have liked, but I felt that the Booch book was
worth the contribution. Besides, this book was really just a second edition of Designing at the time, and my heart
wasn't in it. If I was going to say something, I wanted to say something new and different.

Unfortunately, that version of the Booch book was not to be. It is hard to find the time to write a book during
normal times. During the heady days of the “.com” bubble, it was nearly impossible. Grady got ever busier with
Rational and with new ventures like Catapulse. So the project stalled. Eventually, I asked Grady and Addison—-
Wesley if I could have the chapters that Jim and I wrote to include in his book. They graciously agreed. So several
of the case study and UML chapters came from that source.

The Impact of Extreme Programming
In late 1998, XP reared its head and challenged our cherished beliefs about software development. Should we cre-
ate lots of UML diagrams prior to writing any code, or should we eschew any kind of diagrams and just write lots
of code? Should we write lots of narrative documents that describe our design, or should we try to make the code
narrative and expressive so that ancillary documents aren’t necessary? Should we program in pairs? Should we
write tests before we write production code? What should we do?

This revolution came at an opportune time for me. During the middle to late 90s, Object Mentor was helping
quite a few companies with object-oriented (OO) design and project management issues. We were helping compa-
nies get their projects done. As part of that help, we instilled our own attitudes and practices into the teams.
Unfortunately, these attitudes and practices were not written down. Rather, they were an oral tradition that was
passed from us to our customers.

By 1998, I realized that we needed to write down our process and practices so that we could better articulate
them to our customers. So, I wrote many articles about process in the C++ Report. 1 These articles missed the
mark. They were informative, and in some cases entertaining, but instead of codifying the practices and attitudes

1. These articles are available in the “publications” section of http: //www.objectmentor. com There are four of them. The first
three are entitled “Tterative and Incremental Development™ (I, IT, IIT). The last is entitled “C.O.D.E Culled Object Development

procEss.”



vi Preface

that we actually used in our projects, they were an unwitting compromise to values that had been imposed upon me
for decades. It took Kent Beck to show me that,

The Beck Connection

In late 1998, as I was fretting over codifying the Object-Mentor process, I ran into Kent’s work on Extreme Pro-
gramming (XP). The work was scattered through Ward Cunningham’s wiki® and was mixed with the writings of
many others. Stil], with some work and diligence I was able to get the gist of what Kent was talking about. I was
intrigued, but skeptical. Some of the things that XP talked about were exactly on target for my concept of a devel-
opment process. Other things, however, like the lack of an articulated design step, left me puzzied.

Kent and I could not have come from more disparate software circumstances. He was a recognized Smalltalk
consultant, and [ was a recognized C++ consultant. Those two worlds found it difficult to communicate with one
another. There was an almost Kuhnian® paradigm gulf between them.

Under other circumstances, I would never have asked Kent to write an article for the C++ Report. But the
congruence of our thinking about process was able to breech the language gulf. In February of 1999, I met Kent in
Munich at the OOP conference. He was giving a talk on XP in the room across from where I was giving a talk on
principles of OOD. Being unable to hear that talk, I sought Kent out at lunch. We talked about XP, and I asked him
to write an article for the C++ Report. It was a great article about an incident in which Kent and a coworker had
been able to make a sweeping design change in a live system in a matter of an hour or so.

Over the next several months, I went through the slow process of sorting out my own fears about XP. My
greatest fear was in adopting a process in which there is no explicit up-front design step. I found myself balking at
that. Didn’t I have an obligation to my clients, and to the industry as a whole, to teach them that design is impor-
tant enough to spend time on?

Eventually, I realized that I did not really practice such a step myself. Even in all the articles and books I had
written about design, Booch diagrams, and UML diagrams, 1 had always used code as a way to verify that the dia-
grams were meaningful. In all my customer consulting, I would spend an hour or two helping them to draw dia-
grams and then [ would direct them to explore those diagrams with code. I came to understand that though XP’s
words about design were foreign (in a Kuhnian* sense), the practices behind the words were familiar to me.

My other fears about XP were easier to deal with. I had always been a closet pair programmer. XP gave me
a way to come out of the closet and revel in my desire to program with a partner. Refactoring, continuous integra-
tion, and customer on-site were all very easy for me to accept. They were very close to the way I already advised
my customers to work. '

One practice of XP was a revelation for me. Test-first design sounds innocuous when you first hear it. It says
to write test cases before you write production code. All production code is written to make failing test cases pass.
I was not prepared for the profound ramifications that writing code this way would have. This practice has
completely transformed the way I write software, and transformed it for the better. You can see that transformation
in this book. Some of the code written in this book was written before 1999. You won’t find test cases for that code.
On the other hand, all of the code written after 1999 is presented with test cases, and the test cases are typically
presented first. I'm sure you'll note the difference.

So, by the fall of 1999 I was convinced that Object Mentor should adopt XP as its process of choice and that
I should let go of my desire to write my own process. Kent had done an excellent job of articulating the practices

and process of XP, and my own feeble attempts paled in comparison.

2. http://c2.com/cgi /wiki. This website contains a vast number of articles on an immense variety of subjects. Its authors number
in the hundreds or thousands. It has been said that only Ward Cunningham could instigate a social revolution using a few lines of Perl.

3. Any credible intellectual work written between 1995 and 2001 must use the term “Kuhnian.” It refers to the book, The Structure of Sci-
entific Revolutions, by Thomas S. Kuhn, The University of Chicago Press, 1962.

4. If you mention Kuha twice in a paper, you get extra credit.



Preface vii

Organization
This book is organized into six major sections followed by several appendices.

* Section 1: Agile Development,
This section describes the concept of agile development. It starts with the Manifesto of the Agile Alliance, provides
an overview of Extreme Programming (XP), and then goes into many small case studies that illuminate some of the
individual XP practices——especially those that have an impact upon the way we design and write code.

* Section 2: Agile Design
The chapters in this section talk about object-oriented software design. The first chapter asks the question,
What is Design? It discusses the problem of, and techniques for, managing complexity. Finally, the section
culminates with the principles of object-oriented class design.

¢ Section 3: The Payroll Case Study
This is the largest and most complete case study in the book. It describes the object-oriented design and C++
implementation of a simple batch payroll system. The first few chapters in this section describe the design
patterns that the case study encounters. The final two chapters contain the full case study.

* Section 4: Packaging the Payroll System
This section begins by describing the principles of object-oriented package design. It then goes on to illus-
trate those principles by incrementally packaging the classes from the previous section.

* Section 5: The Weather Station Case Study
This section contains one of the case studies that was originally planned for the Booch book. The Weather
Station study describes a company that has made a significant business decision and explains how the Java
development team responds to it. As usual, the section begins with a description of the design patterns that
will be used and then culminates in the description of the design and implementation.

* Section 6: The ETS Case Study
This section contains a description of an actual project that the author participated in. This project has been
in production since 1999. It is the automated test system used to deliver and score the registry examination
for the National Council of Architectural Registration Boards.

* UML Notation Appendices
The first two appendices contains several small case studies that are used to desctibe the UML notation.

* Miscellaneous Appendices

How to Use This Book

If You are a Developer...
Read the book cover to cover. This book was written primarily for developers, and it contains the information you
need to develop software in an agile manner. Reading the book cover to cover introduces practices, then principles,
then patterns, and then it provides case studies that tie them all together. Integrating all this knowledge will help
you get your projects done.

If You Are a Manager or Business Analyst...
Read Section 1, Agile Development. The chapters in this section provide an in-depth discussion of agile principles
and practices. They’ll take you from requirements to planning to testing, refactoring, and programming. It will
give you guidance on how to build teams and manage projects. It will help you get your projects done.

If You Want to Learn UML...
First read Appendix A, UML Notation I: The CGI Example. Then read Appendix B, UML Notation II: The
STATMUX. Then, read all the chapters in Section 3, The Payroll Case Study. This course of reading will give you a
good grounding in both the syntax and use of UML. It will also help you translate between UML and a program-

ming language like Java or C++.



vill Preface

If You Want to Learn Design Patterns...

To find a particular pattern, use the “List of Design Patterns” on page xxii to find the patten you are
interested in.

To learn about patterns in general, read Section 2, Agile Design to first learn about design principles, and
then read Section 3, The Payroll Case Study; Section 4, Packaging the Payroll System; Section 5, The Weather Sta-
tion Case Study; and Section 6, The ETS Case Study. These sections define all the patterns and show how to use
them in typical situations.

If You Want to Learn about Object-Oriented Design Principles...

Read Section 2, Agile Design; Section 3, The Payroll Case Study; and Section 4, Packaging the Payroll System.
These chapters will describe the principles of object-oriented design and will show you how to use them.

If You Want to Learn about Agile Development Methods...

Read Section 1, Agile Development. This section describes agile development from requirements to planning, test-
ing, refactoring, and programming.

If You Want a Chuckle or Two...
Read Appendix C, A Satire of Two Companies.

Acknowledgments

A heartfelt thanks to: ‘

Lowell Lindstrom, Brian Button, Erik Meade, Mike Hill, Michael Feathers, Jim Newkirk, Micah Martin,
Angelique Thouvenin Martin, Susan Rosso, Talisha Jefferson, Ron Jeffries, Kent Beck, Jeff Langr, David Farber,
Bob Koss, James Grenning, Lance Welter, Pascal Roy, Martin Fowler, John Goodsen, Alan Apt, Paul Hodgetts,
Phil Markgraf, Pete McBreen, H. S. Lahman, Dave Harris, James Kanze, Mark Webster, Chris Biegay, Alan
Francis, Fran Daniele, Patrick Lindner, Jake Warde, Amy Todd, Laura Steele, William Pietr, Camille Trentacoste,
Vince O’Brien, Gregory Dulles, Lynda Castillo, Craig Larman, Tim Ottinger, Chris Lopez, Phil Goodwin, Charles
Toland, Robert Evans, John Roth, Debbie Utley, John Brewer, Russ Ruter, David Vydra, Ian Smith, Eric Evans,
everyone in the Silicon Valley Patterns group, Pete Brittingham, Graham Perkins, Phlip, and Richard MacDonald.

The books reviewers:

Pete McBreen / McBreen Consulting Bjarne Stroustrup / AT & T Research
Stephen J. Mellor / Projtech.com Micah Martin / Object Mentor Inc.
Brian Button / Object Mentor Inc. James Grenning / Object Mentor Inc.

A very special thanks to Grady Booch and Paul Becker for allowing me to include chapters that were origi-
nally slated for Grady’s third edition of Object Oriented Analysis and Design with Applications.

A special thanks to Jack Reeves for graciously allowing me to reproduce his “What is Design?” article.

Another special thanks to Erich Gamma, for writing the foreword to this book. I hope the fonts are better this
time Erich!

The wonderful and sometimes dazzling illustrations at the head of each chapter were drawn by Jennifer
Kohnke. The decorative illustrations scattered throughout the midst of the chapters are the lovely product of
Angela Dawn Martin Brooks, my daughter, and one of the joys of my life.

Resources
All the source code in this book can be downloaded from www . objectmentor . com/PPP.



About the Authors

Robert C. Martin

Robert C. Martin (Uncle Bob) has been a software professional since 1970 and an international software conSult-
ant since 1990. He is founder and president of Object Mentor Inc., a team of experienced consultants who mentor
their clients worldwide in the fields of C++, Java, .NET, OO, Patterns, UML, Agile Methodologies, and Extreme
Programming. In 1995, Robert authored the best-selling book: Designing Object Oriented C++ Applications
using the Booch Method, published by Prentice Hall. From 1996 to 1999 he was the editor-in-chief of the C++
Report. In 1997, he was chief editor of the book: Pattern Languages of Program Design 3, published by Addison—
Wesley. In 1999, he was the editor of More C++ Gems published by Cambridge Press. He is co-author, with James
Newkirk, of XP in Practice, Addision-Wesley, 2001. In 2002, he wrote the long awaited Agile Software Develap-
ment: Principles, Patterns, and Practices, Prentice Hall, 2002. He has published dozens of articles in various trade
journals, and is a regular speaker at international conferences and trade shows. And he's as happy as a clam.,

James W. Newkirk

James Newkirk is a Software Development Manager/Architect. His eighteen years of experience ranges from pro-
gramming real-time micro-controllers to web services. He co-wrote Extreme Programming in Practice, published
by Addison—Wesley, 2001. Since August of 2000 he has been working with the .NET Framework and has contrib-
uted to the development of NUnit, a unit-testing tool for NET.

Robert S. Koss

Robert S. Koss, Ph.D., has been writing software for 29 years. He has applied the principles of Object Oriented
Design to many projects where he has served in roles ranging from programmer to senior architect. Dr. Koss has
taught hundreds of OOD and programming language courses to thousands of students throughout the world. He is
currently employed as a Senior Consultant at Object Mentor, Inc.



Brief Contents

Section 1  Agile Development 1
Chapter 1  Agile Practices 3
Chapter 2 Overview of Extreme Programming 11
Chapter 3 Planning 19
Chapter 4 Testing 23
Chapter 5 Refactoring 31
Chapter 6 A Programming Episode 43
Section 2  Agile Design 85
Chapter 7 What Is Agile Design? 87
Chapter 8 SRP: The Single-Responsibility Principle 95
Chapter 9 OCP: The Open—Closed Principle 99
Chapter 10 LSP: The Liskov Substitution Principle 111
Chapter 11 DIP: The Dependency-Inversion Principle 127
Chapter 12 ISP: The Interface-Segregation Principle 135
Section 3 The Payroll Case Study 147
Chapter 13 COMMAND and ACTIVE OBJECT 151
Chapter 14 TEMPLATE METHOD & STRATEGY: Inheritance vs. Delegation 161
Chapter 15 FACADE and MEDIATOR 173

SINGLETON and MONOSTATE 177

Chapter 16



Brief Contents

Chapter 17 NULL OBJECT 189
Chapter 18 The Payroll Case Study: Iteration One Begins 193
Chapter 19 The Payroll Case Study: Implementation 205
Section 4 Packaging the Payroll System 251
Chapter 20 Principles of Package Design 253
Chapter 21 FACTORY 269
Chapter 22 The Payroll Case Study (Part 2) 275
Section 5 The Weather Station Case Study 291
Chapter 23 COMPOSITE 293
Chapter 24 OBSERVER—Backing into a Pattern 297
Chapter 25 ABSTRACT SERVER, ADAPTER, and BRIDGE 317
Chapter 26 PROXY and STAIRWAY TO HEAVEN: Managing Third Party APIs 327
Chapter 27 Case Study: Weather Station 355
Section 6 The ETS Case Study 385
Chapter 28 VISITOR 387
Chapter 29 STATE 419
Chapter 30 The ETS Framework 443
Appendix A UML Notation I: The CGI Example 467
Appendix B UML Notation II: The STATMUX 489
Appendix C A Satire of Two Companies 507
Appendix D The Source Code Is the Design 517

525

Index




Contents

Foreword ii
Preface iv
About the Authors ix
List of Design Patterns xxii
Section 1  Agile Development 1
Chapter 1  Agile Practices 3
The Agile Alliance 4

The Manifesto of the Agile Alliance 4

Principles 6

Conclusion 8
Bibliography 9

Chapter 2  Overview of Extreme Programming 11
The Practices of Extreme Programming 11

Customer Team Member 11

User Stories 12

Short Cycles 12

Acceptance Tests 13

Pair Programming 13

Test-Driven Development 14

Collective Ownership 14

Continuous Integration 14

Sustainable Pace 15

Open Workspace 15

The Planning Game 15

Simple Design 15

Refactoring 16

Metaphor 16

Conclusion 17

17

Bibliography

xil



Contents i
Chapter 3 Planning 19
Initial Exploration 20

Spiking, Splitting, and Velocity 20

Release Planning 20

Iteration Planning 21

Task Planning 21

The Halfway Point 22

Iterating 22

Conclusion 2
Bibliography 22

Chapter 4 Testing 23
Test Driven Development 23

An Example of Test-First Design 24

Test Isolation 25

Serendipitous Decoupling 26

Acceptance Tests 27

Example of Acceptance Testing 27

Serendipitous Architecture 29

Conclusion 29
Bibliography 29

Chapter 5 Refactoring 31
Generating Primes: A Simple Example of Refactoring 32

The Final Reread 38

Conclusion 42

Bibliography 42

Chapter 6 A Programming Episode 43
The Bowling Game 44

Conclusion 82

Section 2  Agile Design 85
Symptoms of Poor Design 85

Principles 86

Smells and Principles 86

Bibliography 86

Chapter 7 What Is Agile Design? 87
What Goes Wrong with Software? 87

Design Smells—The Odors of Rotting Software 88

What Stimulates the Software to Rot? 89

Agile Teams Don’t Allow the Software to Rot 90

The “Copy” Program 90

Agile Design of the copy Example 93

How Did the Agile Developers Know What to Do? 94

Keeping the Design As Good As It Can Be 94

Conclusion 94

94

Bibliography



xlv Contents

Chapter 8 SRP: The Single-Responsibility Principle 95
A CLASS SHOULD HAVE ONLY ONE REASON TO CHANGE.

SRP: The Single-Responsibility Principle 95

What Is a Responsibility? 97

Separating Coupled Responsibilities 97

Persistence 98

Conclusion 98
Bibliography 98

Chapter 9 OCP: The Open—Closed Principle 99

SOFTWARE ENTITIES (CLASSES, MODULES, FUNCTIONS, ETC.) SHOULD BE OPEN
FOR EXTENSION, BUT CLOSED FOR MODIFICATION.

OCP: The Open—Closed Principle 99
Description 100
Abstraction Is the Key 100
The shape Application 101
Violating the OCP 101
Conforming to the OCP 103

OK, I Lied 104
Anticipation and “Natural” Structure 105
Putting the “Hooks” In 105
Using Abstraction to Gain Explicit Closure 106
Using a “Data-Driven” Approach to Achieve Closure 107
Conclusion 108
Bibliography ’ 109
Chapter 10 LSP: The Liskov Substitution Principle 111

SUBTYPES MUST BE SUBSTITUTABLE FOR THEIR BASE TYPES.

LSP: The Liskov Substitution Principle 111
A Simple Example of a Violation of the LSP 112
Square and Rectangle, a More Subtle Violation 113
The Real Problem 115
Validity Is Not Intrinsic 116

ISA Is about Behavior 116
Design by Contract 117
Specifying Contracts in Unit Tests 117

A Real Example . 117
Motivation 118
Problem 119

A Solution That Does Not Conform to the LSP 120

An LSP-Compliant Solution _ 120
Factoring Instead of Deriving 121
Heuristics and Conventions 124
Degenerate Functions in Derivatives 124
Throwing Exceptions from Derivatives 124
Conclusion 125

Bibliography 125



Contents

xv
Chapter 11 DIP: The Dependency-Inversion Principle 127
A. HIGH-LEVEL MODULES SHOULD NOT DEPEND UPON LOW-LEVEL MODULES.
BOTH SHOULD DEPEND ON ABSTRACTIONS.
B. ABSTRACTIONS SHOULD NOT DEPEND ON DETAILS. DETAILS SHOULD
DEPEND ON ABSTRACTIONS.
DIP: The Dependency-Inversion Principle 127
Layering 128
An Inversion of Ownership 128
Depend on Abstractions 129
A Simple Example 130
Finding the Underlying Abstraction 131
The Furnace Example 132
Dynamic v. Static Polymorphism 133
Conclusion 134
Bibliography 134
Chapter 12 1ISP: The Interface-Segregation Principle 135
Interface Pollution 135
Separate Clients Mean Separate Interfaces 137
The Backwards Force Applied by Clients Upon Interfaces 137
CLIENTS SHOULD NOT BE FORCED TO DEPEND ON METHODS THAT THEY DO
NOT USE.
ISP: The Interface-Segregation Principle 137
Class Interfaces v. Object Interfaces 138
Separation through Delegation 138
Separation through Multiple Inheritance 139
The ATM User Interface Example 139
The Polyad v. the Monad 144
Conclusion 145
Bibliography 145
Section 3 The Payroll Case Study 147
Rudimentary Specification of the Payroll System 148
Exercise . 148
Use Case 1: Add New Employee 148
Use Case 2: Deleting an Employee 149
Use Case 3: Posta Time Card 149
Use Case 4: Posting a Sales Receipt 149
Use Case 5: Posting a Union Service Charge 150
Use Case 6: Changing Employee Details 150
Use Case 7: Run the Payroll for Today 150
Chapter 13 COMMAND and ACTIVE OBJECT 151
Simple Commands 152
Transactions 153
Physical and Temporal Decoupling 154
Temporal Decoupling 154
UNDO 154




