it RRASE

James R. Armstrong ofyeitfany

*ﬂ. *7-‘; L .\.Ik IL.H Hﬁ ﬁ: Prentice

China Machine Press Hall

VHDLigit. ®RRMEE e

V

HDL Design Representation and Synthesis

(Second Edition)

S B Y

e

T BN LB T 5 S 69VH00 R <}

FHEH. SRR T LSBT NERT - ——EARGHRETRTEE,
MYUSETROGE TRAENRIANR, FEAIEE NSRRI ON BTG, RAH
A TVHDLIEE R HX@AN, AREFRELHRRETE, E6TRRBRERHEH
BIF. 3#Mid T AT REGRIENES LRSI ZHET,

FEAT

ORUIR: RmEAE, AR RER NS RAEBMSAR

W VHDL. E®|EH, Wik, WocH, BmRR, HEdR, EomEgst

" EXMVHOLBBER . GRAHE, HRYE A62H, MFEHE, RAFESS

" BVHOLSRIHRBAS : MWHIEERKMATHIITRE, BIITRE A THEOEIPLD, 145,
FPGA (fEXilinx TR) FbsdE it (HASynopsysTH) #

James R. Armstrong i+ & 335 R W8 T k% (Virginia Tech) HHlL5it
FHLLE A%, VHDLAEMERS. [EEERHILE RAMAIHER R LUR
IEEE VHDLARMEML TYEA % B shib TR .

E

F. Gail Gray 12 # &R TP T k% (Virginia Tech) HAL5H+EHL TR
AWEIR. WRESRAFHEN. EEMEH TR0,

J EEXEXFEPHE
VHDLISEY, $E iR g
LRBEFY, €%,
ISBN 7-111-11676-3 M + % 35 : www.china-pub.com)

EERE L. (010) 68995259 8006100280 (LE#4K)
BYR{&E% . chiefeditor@hzbook.com

| R E AR X |

ISBN 7-111-11676-3/TP - 2814
REM: 69.005T (By#R)

"“ul I"“ ERTESRKETEME1S 100037

£ m R K ¥ E =

VHDL
®/it. RRFES

(SRIhR - SB2hR)
VHDL Design Representation
and Synthesis
(Second Edition)

James R. Armstrong .,
K (%) F. Gail Gray

MENATAERAT

B1262890

English reprint edition copyright © 2003 by Pearson Education North Asia Limited and
China Machine Press.

Original English language title: VHDL Design Representation and Synthesis, Second Edition
by James R.Armstrong and F.Gail Gray, Copyright 2000.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Prentice Hall PTR, Inc.

For sale and distribution only in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR). X

A< 3585 SO B 1 Prentice Hall PTR, IncBAAUHUME Tk th AT AR . RE i RE 5
AT, RBLUEMTRE MR RS BAE

B THEAREHEAMGBR (FaErEEBBXMES. RITFHITEK) #HE.

% 55 E % Pearson Education3 £ (H RS ABOLH things, TREESBHE.

ST, BT .

ABIENEIZS: EF: 01-2003-1006

E#Eﬁﬂadqm)ﬁﬁ

VHDLiit . Rahess (30K - 58200 / (3) FIMSTAEE (Armstrong, JR.), (3£)
#E (Gray, F.G.) Fougls . YA C A HRREE, 20033

(BREMEEE)

HBL2RX: V@Lﬁsgn Representation and Synthesis ,Second Edition

ISBN 7-111-11676-3

[vo- T @B @#%-- W #84-HRES, VHDL -3 V. TP312
rh ERR A E BIHCIPEIR T (2003) 550097455

VLR T B AR (s mEmRET EXE225 BRBERE 100037)
FiEmE: & B

e ATz ELENRI BRI - B IR RITRTRAT
200343 5 45 1 RS 1 UK ED R

787mm x 1092mm /16 - 42.25E03K

EN¥L: 0001-3 000/

EM: 69.0070 (PR

A, mARRT. BR., 31, hFdRTHiER

Preface

The purpose of this book is to integrate hardware descrip-
tion languages into the digital design process at all levels of abstraction. There are two main
steps in this process: (1) development of a hardware description language model and (2) synthe-
sis of the model into an ASIC logic circuit or FPGAs. In teaching this process, we use VHDL,
the VHSIC Hardware Description Language. VHDL, whose development began in 1983 under
DOD sponsorship, was further developed by the IEEE and released as IEEE Standard 1076 in
1987. Further improvements were incorporated since then and the language was re-released as
an updated standard in 1993. Since that time, VHDL has evolved into a de facto industry stan-
dard for hardware description languages. In the opinion of the authors, it has the most compre-
hensive set of modeling constructs available in any hardware description language. For these
reasons, VHDL was chosen as the base language for this book. We explore the language in an
in-depth, unified manner.

Most books currently on the market that treat hardware description languages, particularly
VHDL, are either: (1) language texts that cover the VHDL language thoroughly, but do not show
how to integrate the language into the digital design process, or (2) logic design books that pri-
marily use VHDL models as simulation tools to validate designs that are produced in the classi-
cal manner. This book fully integrates VHDL into the design process starting with a high-level
executable model that provides an unambiguous, executable version of the specification, and
concluding with a gate-level implementation.

In this book, synthesis is viewed as a multistep process, beginning with an English
description which is transformed first into VHDL and then from VHDL into a circuit schematic.
We discuss synthesis from two viewpoints: 1) the mappings: emphasis is placed on understand-
ing the relationship between VHDL language constructs and the implied logic circuit. A full
chapter is devoted to correct modeling style for synthesis; 2) the tools: we illustrate the synthesis
process using two very popular tool sets, the Synopsys Design Analyzer and Compiler (for
ASICs) and the Xilinx Foundation Series (for FPGAs). Since ASICs and FPGAs are the targets,

xiii

Xiv Preface

a chapter is devoted to these technologies. The book also contains a chapter illustrating the com-
plete top-design design process from specification to logic synthesis.

This book is written for three main educational purposes: (1) for a second course in logic
design for undergraduate students in Electrical Engineering, Computer Engineering, and Com-
puter Science; (2) for a graduate course dealing with hardware description languages and other
design aids; and (3) for practicing engineers who wish to learn about design with hardware
description languages. Thus the assumed background for the book is (1) a basic course in com-
puter organization and logic design and (2) some knowledge of high-level languages, such as C,
C++, or JAVA,

The authors use the text in a course, which is the second course in a logic design sequence.
The students are either juniors in Computer Engineering, for whom the course is required, or
Electrical Engineering seniors, for whom the course is an elective. In this semester length course
we cover Chapters 1,2, 3,4,5,9, 10, and 11. The emphasis is on developing VHDL models ina
conservative algorithmic style that can be synthesized. To support this in the laboratory, we use a
PC version of ViewLogic, Inc.’s Workview for VHDL modeling and simulation and schematic
capture. Xilinx software and XS40/XTEND boards are used for FPGA synthesis. We also em-
ploy System View from Elanix to provide for high-level design of digital filters. Workstation-
based Synopsys tools are used for ASIC synthesis. All students in our department have their own
PCs, so the use of a PC-based system such as Workview has been effective in being able to serve
the large number of students we normally teach in our second digital design course. For this
same reason, we use telnet and dc_shell scripts for Synopsys synthesis. Typical assignments
include:

1. An introductory assignment to familiarize students with Workview’s VHDL modeling,
simulation and schematic capture environment.

2. An assignment to develop and simulate a single VHDL behavioral model.

3. An assignment to develop a model of a counter, or some similar circuit. VHDL behav-
ioral models are developed for counter flip-flops and gates, and the schematic capture
capability of Workview is used to construct the structural model of the counter.

4. An assignment to translate a system description is first translated into a VHDL behav-

joral model which is simulated. This is typically a state machine such as an interface

protocol, a vending machine, or a traffic light controller.

An introductory tutorial to the Xilinx Foundation Series Software.

6. An assignment to implement a small circuit in both Synopsys ASIC logic and FPGAs
and compare speed of execution.

7. A fairly complicated FPGA project such as a booth multiplier, calculator, small proces-
sor, digital filter, or graphics display. For the filter, the codec on the XSTEND board is
used for A/D and D/A comversion. The Xilinx filter code is developed using System
View. The graphics display displays a pattern stored in RAM on a VGA monitor.

d

If used for a graduate course, the entire book can be covered in one semester. In such a
course, one can cover the broad range of constructs in the language and examine in detail the
language semantics for both simulation and synthesis. In our graduate course at Virginia Tech,
we synthesize with Synopsys and validate synthesized models. We study ways to control the
synthesis to achieve optimum circuits in a delay or area sense. High-level modeling tools such as

Preface xv

Express VHDL, SPW, and System View are also covered. A comparison is done between VHDL
and Verilog.

For this course, the student’s laboratory assignments include:

1. An assignment to develop and simulate a single VHDL behavioral model.

2. An assignment to develop a model of a counter or some similar circuit. VHDL behav-
ioral models are developed for counter flip-flops and gates, and then a VHDL structural
model is developed for the whole system.

3. An assignment involving complex data types, e.g., using array aggregates and record
types to implement a tabular representation of a finite state machine.

4. A system modeling assignment that involves the use of bus resolution and bus proto-
cols. This system employs the IEEE 9 valued logic system. Examples include the
URISC processor system in Chapter 6 or a histogram construction system for image
processing.

5. An assignment where a model is written, simulated, and synthesized using both VHDL
and Verilog and comparison’s made

6. A semester project where the students model a system of their choice. One can choose
projects, which stretch the language, i.., involve applications that are not typical, such
as modeling parallel processing systems or modeling systems which are not digital.

The book contains hundreds of VHDL models and code fragments. All code has been ana-
lyzed, and simulated, and synthesized (where required), using the Synopsys VHDL system. The
only exception to this is the VHDL 93 code. In addition, the text contains over 300 homework
problems with a wide range of difficulty. Types of problems include short answer questions,
simple design problems, complex system design problems involving design, modeling, and sim-
ulation, and problems that require a study of a design or design tool issue. Some problems in this
latter category would make good thesis projects!

Accompanying the book is a CD-ROM. On the CD are: 1) source files for all VHDL code
in the book, 2) a set of projects accompanied by supporting data command files, and 3) packages
to support common design paradigms. Problem and project solutions and Power Point lecture
slides are available to instructors who adopt our text for classroom use.

Writing a book of this nature is a large undertaking. In doing so we have received the help
and assistance of a number of individuals and organizations. We would like to thank:

1. Viewlogic, Synopsys, Inc., and Xilinx, for their support in providing us with the VHDL
software to check out the VHDL code in the book and for use in our courses on hard-
ware description languages.

2 Dave Barton of Intermetrics for his review of the manuscript.

3. Our production editor at Prentice Hall, Vincent Janoski.

4. Our book editor at Prentice Hall, Bernard Goodwin, for his enthusiastic support of the
project.

We would also like to thank our wives, Marie and Caryl, for their encouragement and sup-

port in spite of the long hours we spent in front of our computers and their tolerance of laptops
accompanying us on trips and vacations over a period of two years.

Contents

Preface xi
1 Structured Design Concepts 1
1.1 The Abstraction Hierarchy 1
1.2 Textual vs. Pictorial Representations 5
1.3 Types of Behavioral Descriptions 7
1.4 Design Process 8
1.5 Structural Design Decomposition 9
1.6 The Digital Design Space 11
2 Design Tools 17
2.1 CAD Tool Taxonomy 17
2.1.1 Editors 18
2.1.2 Simulators 18
2.1.3 Checkers and Analyzers 18
2.1.4 Optimizers and Synthesizers 18
2.1.5 Cad Systems 18
2.2 Schematic Editors 19
2.3 Simulators 22
2.3.1 Simulation Cycle 24

Contents

2.3.2 Simulator Organization 25
2.3.3 Language Scheduling Mechanism 25
2.3.4 Simulation Efficiency 25
2.4 The Simulation System 27
2.5 Simulation Aids 28
2.5.1 Model Preparation 28
2.5.2 Model Test Vector Development 29
2.5.3 Model Debugging 29
 2.5.4 Results Interpretation 31
2.6 Applications of Simulation 32
2.7 Synthesis Tools 33
3 Basic Features of VHDL 41
3.1 Major Language Constructs 43
3.1.1 Design Entities 43
3.1.2 Architectural Bodies 44
3.1.3 Model Testing 48
3.1.4 Block Statements 49
3.1.5 Processes 50
3.1.6
* 3.2 Lexical Description 51
3.2.1 Character Set 52
3.2.2 Lexical Elements 52
3.2.3 Delimiters 53
3.2.4 Identifiers 53
3.2.5 Comments 54
3.2.6 Character Literal 55
3.2.7 String Literal 55
3.2.8 Bit String Literal 55
3.2.9 Abstract Literal 56
3.2.10 Decimal Literal 56
3.2.11 Based Literal 56
3.3 VHDL Source File 57
3.4 Data Types 57
3.4.1 Classification of Types 58
3.4.2 Scalar Data Types 58

3.4.3 Composite Data Types 64

Contents

3.4.4 Access Types 63
3.4.5 File Types 68
3.4.6 TypeMarks 68
3.5 Data Objects 68
3.5.1 Classes of Objects 68
3.5.2 Declaration of Data Objects 69
3.6 Language Statements 72
3.6.1 Assignment Statements 72
3.6.2 Operators and Expressions 77
3.6.3 Sequential Control Statements 83
3.6.4 Architecture Declarations and Concurrent Statements 86
3.6.5 Subprograms 90
3.7 Advanced Features of VHDL 96
3.7.1 Overloading 96
3.7.2 Packages 99
3.7.3 Visibility 100
3.7.4 Libraries 103
3.7.5 Configurations 104
3.7.6 Filel/O 107
3.8 The Formal Nature of VHDL 114
3.9 VHDL 93 115
3.9.1 Lexical Character Set 115
3.9.2 Syntax Changes 115
3.9.3 Process and Signal Timing and New Signal Attributes 116
3.9.4 New Operators 118
3.9.5 Improvements to Structural Models 118
3.9.6 Shared Variables 119
3.9.7 Improved Reporting Capability 120
3.9.8 General Programming Features 120
3.99 File /O 121
3.9.10 Groups 122
3.9.11 Extension of Bit String Literals 122
3.9.12 Additions and Changes to Package Standard 122

3.10 Summary ‘ 122

vi

Contents

4 Basic VHDL Modeling Techniques 135

4.1 Modeling Delay in VHDL 135
4.1.1 Propagation Delay 135
4.1.2 Delay and Concurrency 138
4.1.3 Sequential and Concurrent Statements in VHDL 140
4.1.4 Implementation of Time Delay in the VHDL Simulator 141
4.1.5 Inertial and Transport Delay in Signal Propagation 146

4.2 The VHDL Scheduling Algorithm 147
4.2.1 Waveform Updating 147
4.2.2 Side Effects 150

4.3 Modeling Combinational and Sequential Logic 150

4.4 Logic Primitives 153
4.4.1 Combinational Logic Primitives 153
4.4.2 SEQUENTIAL LOGIC 163
4.4.3 Testing Models: Test Bench Development 168

5 Algorithmic Level Design 185

5.1 General Algorithmic Model Development in

the Behavioral Domain 186
5.1.1 Process Model Graph 187
5.1.2 Algorithmic Model of a Parallel to Serial Converter 189
5.1.3 Algorithmic Models with Timing 192

" 5.1.4 Checking Timing 195

5.2 Representation of System Interconnections 198
5.2.1 Comprehensive Algorithmic Modeling Example 199

5.3 Algorithmic Modeling of Systems 204
5.3.1 Multivalued Logic Systems 204
5.3.2 Comprehensive System Example 212
5.3.3 Time Multiplexing 222

6 Register Level Design 237

6.1 Transition from Algorithmic to Data Flow

Descriptions 237
6.1.1 Transformation Example 238

6.2 Timing Analysis | 241

Contents vii

6.3 Control Unit Design 243

6.3.1 Types of Control Units 243
6.4 Ulumate RISC Machine 245
6.4.1 Single URISC Instruction 246
6.4.2 URISC Architecture 246
6.4.3 URISC Control 248
6.4.4 URISC System 252
6.4.5 Design of the URISC at the Register Level 252
6.4.6 Microcoded Controller for the URISC Processor 254
6.4.7 Hardwired Controller for the URISC Processor 256
7 Gate Level and ASIC Library Modeling 261
7.1 Accurate Gate Level Modeling 261
7.1.1 Asymmetric Timing 262
7.1.2 Load Sensitive Delay Modeling 264
7.1.3 ASIC Cell Delay Modeling 269
7.1.4 Back Annotation of Delays 272
7.1.5 VITAL: A Standard for the Generation of VHDL
Models of Library Elements 275
7.2 Error Checking 277
7.3 Multivalued Logic for Gate Level Modeling 280
7.3.1 Additional Values for MOS Design 280
7.3.2 Generalized State/Strength Model 281
7.3.3 Interval Logic 286
7.3.4 Vantage System 286
7.3.5 Multivalued Gate-Level Models 289
7.3.6 Accurate Delay Modeling 292
7.4 Configuration Declarations for Gate Level Models 292
7.4.1 Default Configuration 296
7.4.2 Configurations and Component Libraries 297
7.5 Modeling Races and Hazards 299
7.6 Approaches to Delay Control 307
8 HDL-Based Design Techniques 315
8.1 Design of Combinational Logic Circuits 315

8.1.1 Combinational Logic Design at the Algorithmic Level 316

viii

8.1.2 Design of Data Flow Models of Combinational Logic

Contents

in the Behavioral Domain 323
8.1.3 Synthesis of Gate-Level Structural Domain
Combinational Logic Circuits 324
8.1.4 Summary of Design Activity for
Combinational Logic Circuits 329
8.2 Design of Sequential Logic Circuits 329
8.2.1 Moore or Mealy Decision 332
8.2.2 Construction of a State Table 333
8.2.3 Creating a State Diagram 333
8.2.4 Transition List Approach 336
8.2.5 Creating a VHDL Model for State Machines 337
8.2.6 Synthesis of VHDL State Machine Models 343
8.3 Design of Microprogrammed Control Units 345
8.3.1 Interface Between Controller and Device 345
8.3.2 Comparison of Hardwired and
Microprogrammed Control Units 345
8.3.3 Basic Microprogrammed Control Unit 348
8.3.4 Algorithmic-Level Model of BMCU 349
8.3.5 Design of Microprogrammed Controllers for State Machines 350
8.3.6 Generalities and Limitations of Microprogrammed
Control Units 358
8.3.7 Alternative Condition Select Methods 361
8.3.8 Alternative Branching Methods 364
9 ASICs and the ASIC Design Process 377
9.1 Whatis an ASIC? 377
9.2 ASIC Circuit Technology 379
9.2.1 CMOS Switches 380
9.3 Types of ASICs 381
9.3.1 PLDs 381
9.3.2 Field Programmable Gate Arrays 381
9.3.3 Gate Arrays 392
9.3.4 Standard Cells 394
9.3.5 Full Custom Chips 398
9.3.6 Relative Cost of ASICs and FPGAs 399

Contents

9.4 The ASIC Design Process 402
9.4.1 Standard Cell ASIC Synthesis 404
9.4.2 Post Synthesis Simulation 415

9.5 FPGA Synthesis 418
9.5.1 FPGA Example 419
9.5.2 Comparison with an ASIC Design 424

10 Modeling for Synthesis 429

10.1 Behavioral Model Development 429
10.1.1 Creation of the Initial Behavioral Model 430
10.1.2 Application-Domain Tools 431
10.1.3 Language-Domain Modeling 434
10.1.4 Modeling and Model Efficiency 437
10.1.5 Application-Domain vs. Language-Domain Modeling 438

10.2 The Semantics of Simulation and Synthesis 439
10.2.1 Delay in Models 444
10.2.2 DataTypes 455

10.3 Modeling Sequential Behavior 455

10.4 Modeling Combinational Circuits for Synthesis 452
10.4.1 Synthesis of Arithmetic Circuits 457
10.4.2 Hierarchical Arithmetic Circuit: BCD to Binary Converter 459
10.4.3 Synthesis of Hierarchical Circuits 460

10.5 Inferred Latches and Don’t Cares 465

10.6 Tristate Circuits 469

10.7 Shared Resources 471

10.8 Flattening and Structuring 472

10.9 Effect of Modcling Style On Circuit Complexity 474
10.9.1 Effect of Selection of Individual Construct 474
10.9.2 Effect of General Modeling Approach 476

11 Integration of VHDL into a Top-Down Design Methodology 489

11.1 Top-Down Design Methodology 489

11.2 Sobel Edge Detection Algorithm 492

1.3 System Requirements Level 495
11.3.1 Written Specifications 495
11.3.2 Requirements Repository 495

Contents

11.4 System Definition Level 499
11.4.1 Executable Specification 499
11.4.2 Test Bench Development for Executable Specifications 508

11.5 Architecture Design 523
11.5.1 System Level Decomposition 523
11.5.2 Hierarchical Decomposition 527
11.5.3 Methodology for Development of Test Benches

for a Hierarchical Structural Model 529

11.6 Detailed Design at the RTL Level 530
11.6.1 Register Transfer Level Design 531
11.6.2 Simulating Structural Models Using Components

with Different Data Types 538
11.6.3 Test Bench Development at the RTL 544

11.7 Detailed Design at the Gate Level 545
11.7.1 Gate-Level Design of Horizontal Filter 545
11.7.2 Optimization of Gate-Level Circuits 545
11.7.3 Gate-Level Testing 547
11.7.4 Methodology for Back Annotation 548

12 Synthesis Algorithms for Design Automation 553

12.1 Benefits of Algorithmic Synthesis 553

12.2 Algorithmic Synthesis Tasks 554
12.2.1 Compilation of VHDL Description into an Internal Format 556
12.2.2 Scheduling 556
12.2.3 Allocation 557
12.2.4 Interaction of Scheduling and Allocation 558
12.2.5 Gantt Charts and Utilization 562
12.2.6 Creating FSM VHDL from an Allocation Graph 563

12.3 Scheduling Techniques 565
12.3.1 Transformational Scheduling 566
12.3.2 Iterative/Constructive Scheduling 567
12.3.3 ASAP Scheduling 567
12.3.4 ALAP Scheduling 568
12.3.5 List Scheduling 570
12.3.6 Freedom-Directed Scheduling 573

12.4 Allocation Techniques 574
12.4.1 Greedy Allocation 574

Contents

xi

12.4.2 Allocation by Exhaustive Search 575
12.4.3 Left Edge Algorithm 575
12.4.4 Assigning Functional Units and Interconnection Paths. 577
12.4.5 Analysis of the Allocation Process 582
12.4.6 Nearly Minimal Cluster Partitioning Algorithm 584
12.4.7 Profit Directed Cluster Partitioning Algorithm (PDCPA) 589
12.5 State of the Art in High-Level Synthesis 600
12.6 Automated Synthesis of VHDL Constructs 602
12.6.1 Constructs that Involve Selection 602
12.6.2 Mapping case Statements to Multiplexers 602
12.6.3 Mapping if...then...else Statements to Multiplexers 604
12.6.4 Mapping Indexed Vector References to Multiplexers 605
12.6.5 Loop Constructs 605
12.6.6 Functions and Procedures 609
References 623
Index 633

CHAPTER 1

Structured Design Concepts

In this chapter we present basic definitions that relate to
the design process. It is necessary to introduce them now so that other concepts can be
explained. The reader should study them carefully in order to comprehend material introduced
later. It will also be useful to revisit this chapter as one proceeds through the text since the full
meaning of the terms will only become clear through use and example.

1.1 THE ABSTRACTION HIERARCHY

In this section we present the abstraction hierarchy employed by digital designers. Abstraction
can be expressed in the following two domains:

Structural domain. A domain in which a component is described in terms of an inter-
connection of more primitive components.

Behavioral domain. A domain in which a component is described by defining its input/
output response.

Figure 1.1 shows structural and behavioral descriptions for a logic circuit, which detects
{wo or more consecutive 1’s or two or more consecutive 0’s on its input X. The structural
description is an interconnection of gate and flip-flop primitives. The behavioral description is
expressed textually in a hardware description language (HDL).

An abstraction hierarchy can be defined as follows:

Abstraction hierarchy. A set of interrelated representation levels that allow a system to
be represented in varying amounts of detail.

Figure 1.2 shows a picture of a typical abstraction hierarchy. For each level i in the hierar-
chy there exists a transformation to level i+1. The level of detail usually increases monotonically
as one moves down in the hierarchy.

