it RRASE

James R. Armstrong ofyeitfany

*ﬂ. *7-‘; L .\.Ik IL.H Hﬁ ﬁ: Prentice

China Machine Press Hall




VHDLigit. ®RRMEE e

V

HDL Design Representation and Synthesis

(Second Edition)

S B Y

e

T BN LB T 5 S 69VH00 R <}

FHEH. SRR T LSBT NERT - ——EARGHRETRTEE,
MYUSETROGE TRAENRIANR, FEAIEE NSRRI ON BTG, RAH
A TVHDLIEE R HX@AN, AREFRELHRRETE, E6TRRBRERHEH
BIF. 3#Mid T AT REGRIENES LRSI ZHET,

FEAT

ORUIR: RmEAE, AR RER NS RAEBMSAR

W VHDL. E®|EH, Wik, WocH, BmRR, HEdR, EomEgst

" EXMVHOLBBER . GRAHE, HRYE A62H, MFEHE, RAFESS

" BVHOLSRIHRBAS : MWHIEERKMATHIITRE, BIITRE A THEOEIPLD, 145,
FPGA (fEXilinx TR ) FbsdE it (HASynopsysTH) #

James R. Armstrong i+ & 335 R W8 T k% (Virginia Tech) HHlL5it
FHLLE A%, VHDLAEMERS. [EEERHILE RAMAIHER R LUR
IEEE VHDLARMEML TYEA % B shib TR .

E

F. Gail Gray 12 # &R TP T k% (Virginia Tech) HAL5H+EHL TR
AWEIR. WRESRAFHEN. EEMEH TR0,

J EEXEXFEPHE
VHDLISEY, $E iR g
LRBEFY, €%,
ISBN 7-111-11676-3 M + % 35 : www.china-pub.com )

EERE L. (010) 68995259 8006100280 (LE#4K)
BYR{&E% . chiefeditor@hzbook.com

| R E AR X |

ISBN 7-111-11676-3/TP - 2814
REM: 69.005T (By#R)

"“ul I"“ ERTESRKETEME1S 100037




£ m R K ¥ E =

VHDL
®/it. RRFES

(SRIhR - SB2hR)
VHDL Design Representation
and Synthesis
(Second Edition)

James R. Armstrong .,
K (%) F. Gail Gray

MENATAERAT

B1262890




English reprint edition copyright © 2003 by Pearson Education North Asia Limited and
China Machine Press.

Original English language title: VHDL Design Representation and Synthesis, Second Edition
by James R.Armstrong and F.Gail Gray, Copyright 2000.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Prentice Hall PTR, Inc.

For sale and distribution only in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR). X

A< 3585 SO B 1 Prentice Hall PTR, IncBAAUHUME Tk th AT AR . RE i RE 5
AT, RBLUEMTRE MR RS BAE

B THEAREHEAMGBR (FaErEEBBXMES. RITFHITEK) #HE.

% 55 E % Pearson Education3 £ (H RS ABOLH things, TREESBHE.

ST, BT .

ABIENEIZS: EF: 01-2003-1006

E#Eﬁﬂadqm)ﬁﬁ

VHDLiit . Rahess (30K - 58200 / (3) FIMSTAEE (Armstrong, JR.), (3£)
#E (Gray, F.G. ) Fougls . YA C A HRREE, 20033

(BREMEEE)

HBL2RX: V@Lﬁsgn Representation and Synthesis ,Second Edition

ISBN 7-111-11676-3

[ vo- T @B @#%-- W #84-HRES, VHDL -3 V. TP312
rh ERR A E BIHCIPEIR T (2003 ) 550097455

VLR T B AR (s mEmRET EXE225 BRBERE  100037)
FiEmE: & B

e ATz ELENRI BRI - B IR RITRTRAT
200343 5 45 1 RS 1 UK ED R

787mm x 1092mm /16 - 42.25E03K

EN¥L: 0001-3 000/

EM: 69.0070 (PR

A, mARRT. BR., 31, hFdRTHiER



Preface

The purpose of this book is to integrate hardware descrip-
tion languages into the digital design process at all levels of abstraction. There are two main
steps in this process: (1) development of a hardware description language model and (2) synthe-
sis of the model into an ASIC logic circuit or FPGAs. In teaching this process, we use VHDL,
the VHSIC Hardware Description Language. VHDL, whose development began in 1983 under
DOD sponsorship, was further developed by the IEEE and released as IEEE Standard 1076 in
1987. Further improvements were incorporated since then and the language was re-released as
an updated standard in 1993. Since that time, VHDL has evolved into a de facto industry stan-
dard for hardware description languages. In the opinion of the authors, it has the most compre-
hensive set of modeling constructs available in any hardware description language. For these
reasons, VHDL was chosen as the base language for this book. We explore the language in an
in-depth, unified manner.

Most books currently on the market that treat hardware description languages, particularly
VHDL, are either: (1) language texts that cover the VHDL language thoroughly, but do not show
how to integrate the language into the digital design process, or (2) logic design books that pri-
marily use VHDL models as simulation tools to validate designs that are produced in the classi-
cal manner. This book fully integrates VHDL into the design process starting with a high-level
executable model that provides an unambiguous, executable version of the specification, and
concluding with a gate-level implementation.

In this book, synthesis is viewed as a multistep process, beginning with an English
description which is transformed first into VHDL and then from VHDL into a circuit schematic.
We discuss synthesis from two viewpoints: 1) the mappings: emphasis is placed on understand-
ing the relationship between VHDL language constructs and the implied logic circuit. A full
chapter is devoted to correct modeling style for synthesis; 2) the tools: we illustrate the synthesis
process using two very popular tool sets, the Synopsys Design Analyzer and Compiler (for
ASICs) and the Xilinx Foundation Series (for FPGAs). Since ASICs and FPGAs are the targets,

xiii
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a chapter is devoted to these technologies. The book also contains a chapter illustrating the com-
plete top-design design process from specification to logic synthesis.

This book is written for three main educational purposes: (1) for a second course in logic
design for undergraduate students in Electrical Engineering, Computer Engineering, and Com-
puter Science; (2) for a graduate course dealing with hardware description languages and other
design aids; and (3) for practicing engineers who wish to learn about design with hardware
description languages. Thus the assumed background for the book is (1) a basic course in com-
puter organization and logic design and (2) some knowledge of high-level languages, such as C,
C++, or JAVA,

The authors use the text in a course, which is the second course in a logic design sequence.
The students are either juniors in Computer Engineering, for whom the course is required, or
Electrical Engineering seniors, for whom the course is an elective. In this semester length course
we cover Chapters 1,2, 3,4,5,9, 10, and 11. The emphasis is on developing VHDL models ina
conservative algorithmic style that can be synthesized. To support this in the laboratory, we use a
PC version of ViewLogic, Inc.’s Workview for VHDL modeling and simulation and schematic
capture. Xilinx software and XS40/XTEND boards are used for FPGA synthesis. We also em-
ploy System View from Elanix to provide for high-level design of digital filters. Workstation-
based Synopsys tools are used for ASIC synthesis. All students in our department have their own
PCs, so the use of a PC-based system such as Workview has been effective in being able to serve
the large number of students we normally teach in our second digital design course. For this
same reason, we use telnet and dc_shell scripts for Synopsys synthesis. Typical assignments
include:

1. An introductory assignment to familiarize students with Workview’s VHDL modeling,
simulation and schematic capture environment.

2. An assignment to develop and simulate a single VHDL behavioral model.

3. An assignment to develop a model of a counter, or some similar circuit. VHDL behav-
ioral models are developed for counter flip-flops and gates, and the schematic capture
capability of Workview is used to construct the structural model of the counter.

4. An assignment to translate a system description is first translated into a VHDL behav-

joral model which is simulated. This is typically a state machine such as an interface

protocol, a vending machine, or a traffic light controller.

An introductory tutorial to the Xilinx Foundation Series Software.

6. An assignment to implement a small circuit in both Synopsys ASIC logic and FPGAs
and compare speed of execution.

7. A fairly complicated FPGA project such as a booth multiplier, calculator, small proces-
sor, digital filter, or graphics display. For the filter, the codec on the XSTEND board is
used for A/D and D/A comversion. The Xilinx filter code is developed using System
View. The graphics display displays a pattern stored in RAM on a VGA monitor.

d

If used for a graduate course, the entire book can be covered in one semester. In such a
course, one can cover the broad range of constructs in the language and examine in detail the
language semantics for both simulation and synthesis. In our graduate course at Virginia Tech,
we synthesize with Synopsys and validate synthesized models. We study ways to control the
synthesis to achieve optimum circuits in a delay or area sense. High-level modeling tools such as
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Express VHDL, SPW, and System View are also covered. A comparison is done between VHDL
and Verilog.

For this course, the student’s laboratory assignments include:

1. An assignment to develop and simulate a single VHDL behavioral model.

2. An assignment to develop a model of a counter or some similar circuit. VHDL behav-
ioral models are developed for counter flip-flops and gates, and then a VHDL structural
model is developed for the whole system.

3. An assignment involving complex data types, e.g., using array aggregates and record
types to implement a tabular representation of a finite state machine.

4. A system modeling assignment that involves the use of bus resolution and bus proto-
cols. This system employs the IEEE 9 valued logic system. Examples include the
URISC processor system in Chapter 6 or a histogram construction system for image
processing.

5. An assignment where a model is written, simulated, and synthesized using both VHDL
and Verilog and comparison’s made

6. A semester project where the students model a system of their choice. One can choose
projects, which stretch the language, i.., involve applications that are not typical, such
as modeling parallel processing systems or modeling systems which are not digital.

The book contains hundreds of VHDL models and code fragments. All code has been ana-
lyzed, and simulated, and synthesized (where required), using the Synopsys VHDL system. The
only exception to this is the VHDL 93 code. In addition, the text contains over 300 homework
problems with a wide range of difficulty. Types of problems include short answer questions,
simple design problems, complex system design problems involving design, modeling, and sim-
ulation, and problems that require a study of a design or design tool issue. Some problems in this
latter category would make good thesis projects!

Accompanying the book is a CD-ROM. On the CD are: 1) source files for all VHDL code
in the book, 2) a set of projects accompanied by supporting data command files, and 3) packages
to support common design paradigms. Problem and project solutions and Power Point lecture
slides are available to instructors who adopt our text for classroom use.

Writing a book of this nature is a large undertaking. In doing so we have received the help
and assistance of a number of individuals and organizations. We would like to thank:

1. Viewlogic, Synopsys, Inc., and Xilinx, for their support in providing us with the VHDL
software to check out the VHDL code in the book and for use in our courses on hard-
ware description languages.

2 Dave Barton of Intermetrics for his review of the manuscript.

3. Our production editor at Prentice Hall, Vincent Janoski.

4. Our book editor at Prentice Hall, Bernard Goodwin, for his enthusiastic support of the
project.

We would also like to thank our wives, Marie and Caryl, for their encouragement and sup-

port in spite of the long hours we spent in front of our computers and their tolerance of laptops
accompanying us on trips and vacations over a period of two years.
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CHAPTER 1

Structured Design Concepts

In this chapter we present basic definitions that relate to
the design process. It is necessary to introduce them now so that other concepts can be
explained. The reader should study them carefully in order to comprehend material introduced
later. It will also be useful to revisit this chapter as one proceeds through the text since the full
meaning of the terms will only become clear through use and example.

1.1 THE ABSTRACTION HIERARCHY

In this section we present the abstraction hierarchy employed by digital designers. Abstraction
can be expressed in the following two domains:

Structural domain. A domain in which a component is described in terms of an inter-
connection of more primitive components.

Behavioral domain. A domain in which a component is described by defining its input/
output response.

Figure 1.1 shows structural and behavioral descriptions for a logic circuit, which detects
{wo or more consecutive 1’s or two or more consecutive 0’s on its input X. The structural
description is an interconnection of gate and flip-flop primitives. The behavioral description is
expressed textually in a hardware description language (HDL).

An abstraction hierarchy can be defined as follows:

Abstraction hierarchy. A set of interrelated representation levels that allow a system to
be represented in varying amounts of detail.

Figure 1.2 shows a picture of a typical abstraction hierarchy. For each level i in the hierar-
chy there exists a transformation to level i+1. The level of detail usually increases monotonically
as one moves down in the hierarchy.



