

CCIE 职业发展系列 CCIE Professional Development

ciscopress.com

CCIE

TCP/IP 路由技术

(第一卷)(英文版)

Routing TCP/IP

A detailed examination of interior routing protocols

[美] Jeff Doyle, CCIE #1919 著

CCIE 职业发展系列

TCP/IP 路由技术(第一巻) (英文版)

Routing TCP/IP, Volume I

[美] Jeff Doyle, CCIE#1919 著

人民邮电出版社

图书在版编目(CIP)数据

TCP/IP 路由技术. 第 1 卷 / (美) 多伊尔(Doyle, J.) 著. 一北京: 人民邮电出版社, 2003.10 (CCIE 职业发展系列)

ISBN 7-115-11790-X

I. T... II. 多... III. 计算机网络一通信协议一路由选择一英文 IV. TN915.04 中国版本图书馆 CIP 数据核字(2003)第 084313 号

版权声明

Original edition, Routing TCP/IP, Volume I (CCIE Professional Development), 1578700418, by Jeff Doyle, published by Pearson Education, Inc., publishing as Cisco Press, Copyright © 1998 by Macmillan Technical Publishing.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage retrieval system, without permission from Pearson Education Inc.

English reprint published by Pearson Education North Asia Limited and Posts and Telecommunication Press, Copyright © 2003.

This edition is manufactured in the People's Republic of China, and is authorized for sale and distribution in the People's Republic of China exclusively (except Taiwan, Hong Kong SAR and Macau SAR).

本书封面贴有 Pearson Education 出版集团激光防伪标签,无标签者不得销售。

CCIE 职业发展系列

TCP/IP 路由技术 (第一卷) (英文版)

- ◆ 人民邮电出版社出版发行 北京市崇文区夕照寺街 14 号邮编 100061 电子函件 315@ptpress.com.cn 两址 http://www.ptpress.com.cn 读者热线 010-67132705 北京汉魂图文设计有限公司制作 北京朝阳展望印刷厂印刷 新华书店总店北京发行所经销
- ◆ 开本: 800×1000 1/16

印张: 64.75

字数: 1433 千字

2003年10月第1版

印数: 1-3000 册

2003年10月北京第1次印刷

著作权合同登记 图字: 01 - 2003 - 6680 号

ISBN 7-115-11790-X/TP • 3711

定价: 99.00元

本书如有印装质量问题,请与本社联系 电话:(010)67129223

内容提要

本书是第一本详细而又完整地介绍互联网内部网关路由选择协议(IGRP)的专业书籍,堪称有关 IGRP 方面不可多得的经典之作。本书共分三个部分。第一部分主要介绍了网络和路由选择的基本知识,对 TCP/IP 和静态、动态路由选择技术作了一个整体的回顾。第二部分是本书的精华,这一部分详细深入地讲述了各种常用的内部网关路由选择协议,如静态路由、RIP、RIPv2、IGRP、EIGRP、OSPF、ISIS 等,每一章除了对该协议的实现机制和参数详尽阐述,使读者对协议的实现原理有一个清晰的理解外,还通过在实际网络环境中的实例,详细地论述了该协议在 Cisco 路由器上的配置和故障处理方法,使读者获取大量解决实际问题的专业技能。第三部分介绍了如缺省路由、路由过滤等多种有效的路由控制工具,用来创建和管理多个 IP 路由选择协议的协调工作。

本书不仅适合那些需要准备通过 CCIE 考试的考生,而且也适合任何需要完整理解 TCP/IP 内部路由选择协议的网络设计和工程人员阅读。本书中对协议细节的讲解和对网络实例的探讨相信会让读者获益匪浅。

Dedications

This book would not have been possible without the concerted efforts of many dedicated people. I would like to thank the following people for their contributions:

First, thanks to Laurie McGuire, development editor, who not only improved the book but improved me as a writer.

Thanks to Jenny DeHaven Carroll and Mike Tibodeau for their careful technical editing. I would also like to thank the following people, who provided technical advice or reviews on selected sections of the book: Howard Berkowitz, Dave Katz, Burjiz Pithawala, Mikel Ravizza, Russ White, and Man-Kit Yueng.

I would like to thank the following people at Macmillan Technical Publishing: Tracy Hughes and Lynette Quinn, who managed the project, and Julie Fairweather, the Executive Editor. In addition to being highly competent, they are three of the nicest people anyone could hope to work with. Also, thanks to Jim LeValley, Associate Publisher, who first approached me about writing this book.

Thanks to Wandel & Golterman, and to Gary Archuleta, W&G's Regional Sales Manager in Denver, for arranging the use of one of their excellent protocol analyzers for the length of the project.

Finally, I want to thank my wife, Sara, and my children: Anna, Carol, James, and Katherine. Their patience, encouragement, and support were critical to the completion of this book.

About the Author

Jeff Doyle is a Senior Network Systems Consultant with International Network Services (INS) in Denver, Colorado. He is a Cisco Certified Internetwork Expert (CCIE # 1919) and a Certified Cisco Systems Instructor. He has developed and taught a variety of networking and internetworking courses. Jeff can be reached at jeff_doyle@ins.com.

About the Reviewers

Jennifer DeHaven Carroll is a principal consultant for International Network Services. She is CCIE number 1402. Jennifer has planned, designed and implemented many IP networks over the past 10 years, utilizing RIP version 2, IGRP, E-IGRP, OSPF and BGP. She has also developed and taught theory and Cisco implementation classes on all IP routing protocols.

Michael Tibodeau is a Systems Engineer for Cisco Systems. Over the past two years, Michael has specialized in security technologies for both his own customers and Networkers audiences. He also focuses on the Electronic Commerce and Quality of Service arenas. Michael holds a Bachelor's degree in Systems Engineering from the University of Virginia and holds a Master's degree in Systems Engineering and Management, concentrating on telecommunications.

Introduction

Routing is an essential element of all but the smallest data communications networks. At one level, routing and the configuration of routers are quite simple. But as internetworks grow in size and complexity, routing issues can become at once both large and subtle. Perversely, perhaps, I am grateful for the difficult problems large-scale routing can present—as a network systems consultant, these problems are my bread and butter. Without them, the phrase "You want fries with that?" could be an unfortunate part of my daily vocabulary.

Cisco Certified Internetwork Experts are widely recognized for their ability to design, troubleshoot, and manage large internetworks. This recognition comes from the fact that you cannot become a CCIE by attending a few classes and then regurgitating some memorized facts onto a written test. A CCIE has proven his or her expertise in an intense, famously difficult hands-on lab exam.

OBJECTIVES

This book is the first in a series designed to aid you in becoming a Cisco Certified Internetwork Expert and the first of two volumes that focuses on TCP/IP routing issues. Early in the project, Kim Lew, Cisco Systems program manager, said, "Our objective is to make CCIEs, not to make people who can pass the CCIE lab." I entirely

agree with that statement and have used it as a guiding principle throughout the writing of this book. Although the book includes many case studies and exercises to help you prepare for the CCIE lab, my primary objective is to increase your understanding of IP routing—both on a generic level and as it is implemented on Cisco routers.

AUDIENCE

The audience for this book is any network designer, administrator, or engineer who needs a full understanding of the interior routing protocols of TCP/IP. Although the practical aspects of the book focus on Cisco's IOS, the information is applicable to any routing platform.

The book is not only for readers who plan to become Cisco Certified Internetwork Experts, but for anyone who wishes to advance his or her knowledge of TCP/IP routing. These readers will fall into one of three categories:

- The "beginner" who has some basic networking knowledge and wishes to begin a deep study of internetworking
- The intermediate-level networking professional who has experience with routers, Cisco or otherwise, and plans to advance that experience to the expert level
- The highly experienced networking expert. This individual
 has extensive hands-on expertise with Cisco routers and is
 ready to take the CCIE lab; however, he or she wants a
 structured review and series of exercises for verification
 and validation.

CCIE Professional Development: Routing TCP/IP, Volume I focuses primarily on the intermediate-level networking professional while offering to the beginner a structured outline of fundamental information and to the expert the required challenges to hone his or her skills.

ORGANIZATION

The fourteen chapters of the book are divided into three parts.

Part I examines the basics of networks and routing. Although more advanced readers may wish to skip the first two chapters, I recommend that they at least skim Chapter 3, "Static Routing," and Chapter 4, "Dynamic Routing Protocols."

Part II covers the TCP/IP Interior Gateway Protocols. Each protocol-specific chapter begins with a discussion of the mechanics and parameters of the protocol. This general overview is followed by case studies on configuring and troubleshooting the protocol on Cisco routers in various network topologies.

The Exterior Gateway Protocols, as well as such topics as multicast routing, Quality of Service routing, router security and management, and routing IPv6 will be covered in Volume II.

Part III examines the tools available for creating and managing interoperability with multiple IP routing protocols, as well as such tools as default routes and route filtering. These chapters, like the ones in Part II, begin with concepts and conclude with case studies.

CONVENTIONS AND FEATURES

Most chapters conclude with a set of review questions, configuration exercises, and troubleshooting exercises. The review questions focus on the theoretical aspects of the chapter topic, whereas the configuration and troubleshooting exercises address Cisco-specific aspects of the chapter topic.

Also at the end of each chapter is a table with a brief description of all important Cisco IOS commands used in that chapter. The conventions used to present these commands are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- Vertical bars () separate alternative, mutually exclusive, elements.
- Square brackets [] indicate optional elements.
- Braces {} indicate a required choice.
- Braces within square brackets [{}] indicate a required choice within an optional element.
- **Boldface** indicates commands and keywords that are entered literally as shown.
- Italics indicate arguments for which you supply values.

Important concepts are called out in margin notes for quick reference.

Figure I.1 shows the conventions used in the illustrations throughout the book.

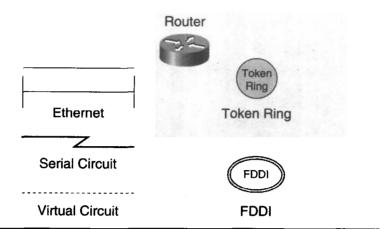


Figure 0.1
Illustration conventions used in this book.

All protocol analyzer displays shown in the book are taken from a Wandel & Goltermann DA-320 DominoLAN Internetwork Analyzer.

目 录

Foreword	1	Breaking the Octet Boundary	57
Part I Routing Basics	3	Troubleshooting a Subnet Mask	62
Chapter 1 Basic Concepts:		ARP	63
Internetworks, Routers, and Addresses		Proxy ARP	69
	4	Gratuitous ARP	72
Bicycles with Motors	6	Reverse ARP	72
Data Link Addresses	7	ICMP	73
Repeaters and Bridges	11	The Host-to-Host Layer	78
Routers	18	TCP	78
Network Addresses	22	UDP	83
Looking Ahead	25	Looking Ahead	84
Recommended Reading	25	Summary Table: Chapter 2 Command	i
Review Questions	26	Review	85
Chapter 2 TCP/IP Review	28	Recommended Reading	85
The TCP/IP Protocol Layers	. 29	Review Questions	86
The IP Packet Header	32	Configuration Exercises	87
IP Addresses	40	Troubleshooting Exercises	88
The First Octet Rule	45	Chapter 3 Static Routing	90
Address Masks	48	The Route Table	92
Subnets and Subnet Masks	51	Configuring Static Routes	97
Designing Subnets	55	Case Study: Simple Static Routes	97

Case Study: Summary Routes	101	Periodic Updates	148
Case Study: Alternative Routes	103	Neighbors	148
Case Study: Floating Static Routes	105	Broadcast Updates	148
Case Study: Load Sharing	109	Full Routing Table Updates	149
Per Destination Load Sharing and Fast		Routing by Rumor	149
Switching	110	Route Invalidation Timers	151
Per Packet Load Sharing and Process		Split Horizon	152
Switching	111	Counting to Infinity	156
Case Study: Recursive Table Lookups	113	Triggered Updates	157
Troubleshooting Static Routes	114	Holddown Timers	158
Case Study: Tracing a Failed Route	115	Asynchronous Updates	158
Case Study: A Protocol Conflict	121	Link State Routing Protocols	160
Looking Ahead	126	Neighbors	161
Summary Table: Chapter 3 Command		Link State Flooding	162
Review	126	Sequence Numbers	163
Review Questions	127	Aging	172
Configuration Exercises	128	The Link State Database	173
Troubleshooting Exercises	130	The SPF Algorithm	176
Chapter 4 Dynamic Routing		Areas	181
Protocols	136	Interior and Exterior Gateway	
Routing Protocol Basics	138	Protocols	183
Path Determination	138	Static or Dynamic Routing?	185
Metrics	141	Looking Ahead	186
Hop Count	142	Recommended Reading	186
Bandwidth	142	Review Questions	188
Load	143	Part II Interior Routing Protocols	189
Delay	143	Chapter 5 Routing Information	
Reliability	143	Protocol (RIP)	190
Cost	144	Operation of RIP	192
Convergence	144	RIP Timers and Stability Features	193
Load Balancing	146	RIP Message Format	196
Distance Vector Routing Protocols	146	Request Message Types	199
Common Characteristics	148	Classful Routing	200

Classful Routing: Directly Connected		Case Study: Setting Maximum Paths	256
Subnets	201	Case Study: Multiple IGRP Processes	257
Classful Routing: Summarization at		Troubleshooting IGRP	260
Boundary Routers	203	Case Study: Unequal-Cost Load	
Classful Routing: Summary	205	Balancing, Again	261
Configuring RIP	205	Case Study: A Segmented Network	263
Case Study: A Basic RIP		Looking Ahead	266
Configuration	205	Summary Table: Chapter 6 Command	
Case Study: Passive Interfaces	207	Review	267
Case Study: Configuring Unicast		Recommended Reading	268
Updates	210	Review Questions	268
Case Study: Discontiguous Subnets	212	Configuration Exercises	269
Case Study: Manipulating RIP		Troubleshooting Exercises	273
Metrics	216	Chapter 7 Routing Information Protoc	ol
Troubleshooting RIP	219	Version 2	280
Looking Ahead	220	Operation of RIPv2	282
Summary Table: Chapter 5 Command		RIPv2 Message Format	282
Review	220	Compatibility with RIPv1	286
Recommended Reading	220	Classless Route Lookups	287
Review Questions	221	Classless Routing Protocols	287
Configuration Exercises	221	Variable-Length Subnet Masking	288
Troubleshooting Exercises	223	Authentication	292
Chapter 6 Interior Gateway Routing		Configuring RIPv2	296
Protocol (IGRP)	230	Case Study: A Basic RIPv2	
Operation of IGRP	232	Configuration	297
IGRP Timers and Stability Features	235	Case Study: Compatibility with	
IGRP Metrics	237	RIPv1	297
IGRP Packet Format	245	Case Study: Using VLSM	300
Configuring IGRP	249	Case Study: Discontiguous Subnets and	
Case Study: A Basic IGRP		Classless	
Configuration	250	Routing	303
Case Study: Unequal-Cost Load		Case Study: Authentication	306
Balancing	251	Troubleshooting RIPv2	309

Case Study: Misconfigured VLSM	310	Case Study: A Missing Neighbor	388
Looking Ahead	317	Stuck-in-Active Neighbors	394
Summary Table: Chapter 7 Command		Looking Ahead	399
Review	317	Summary Table: Chapter 8 Command	
Recommended Reading	318	review	399
Review Questions	318	Review Questions	401
Configuration Exercises	319	Configuration Exercises	402
Troubleshooting Exercises	321	Troubleshooting Exercises	404
Chapter 8 Enhanced Interior Gateway		Chapter 9 Open Shortest Path First	408
Routing Protocol(EIGRP)	326	Operation of OSPF	410
Operation of EIGRP	329	Neighbors and Adjacencies	412
Protocol-Dependent Modules	330	The Hello Protocol	413
Reliable Transport Protocol	331	Network Types	415
Neighbor Discovery/Recovery	333	Designated Routers and Backup	
The Diffusing Update Algorithm	335	Designated Routers	418
DUAL: Preliminary Concepts	335	OSPF Interfaces	423
The DUAL Finite State Machine	345	OSPF Neighbors	430
Diffusing Computation: Example 1	349	Flooding	450
Diffusing Computation: Example 2	354	Areas	457
EIGRP Packet Formats	363	Router Types	460
The EIGRP Packet Header	363	Partitioned Areas	462
General TLV Fields	365	Virtual Links	463
IP-Specific TLV Fields	366	The Link State Database	466
Address Aggregation	371	LSA Types	470
Configuring EIGRP	376	Stub Areas	479
Case Study: A Basic EIGRP		The Route Table	485
Configuration	377	Destination Types	486
Case Study: Redistribution with IGRP	379	Path Types	487
Case Study: Disabling Automatic		Route Table Lookups	490
Summarization	383	Authentication	491
Case Study: Address Aggregation	384	OSPF over Demand Circuits	491
Authentication	385	OSPF Packet Formats	493
Troubleshooting EIGRP	387	The Packet Header	495

The Hello Packet	498		555
The Database Description Packet	499	Case Study: OSPF over Demand	
The Link State Request Packet	501	Circuits	565
The Link State Update Packet	502	Troubleshooting OSPF	567
The Link State Acknowledgment		Case Study: An Isolated Area	572
Packet	503	Case Study: Misconfigured	
OSPF LSA Formats	504	Summarization	577
The LSA Header	504	Looking Ahead	581
The Router LSA	506	Summary Table: Chapter 9 Command	
The Network LSA	509	Review	581
The Network and ASBR Summary		Recommended Reading	583
LSAs	510	Review Questions	584
The Autonomous System External		Configuration Exercises	585
LSA	512	Troubleshooting Exercises	588
The NSSA External LSA	513	Chapter 10 Integrated IS-IS	592
The Options Field	515	Operation of Integrated IS-IS	595
Configuring OSPF	516	IS-IS Areas	597
Case Study: A Basic OSPF		Network Entity Titles	600
Configuration	516	IS-IS Functional Organization	603
Case Study: Setting Router IDs with		Subnetwork Dependent Functions	604
Loopback		Subnetwork Independent Functions	610
Interfaces	520	IS-IS PDU Formats	621
Case Study: Domain Name Service		CLV Fields	624
Lookups	525	The IS-IS Hello PDU Format	627
Case Study: OSPF and Secondary		The IS-IS Link State PDU Format	636
Addresses	526	The IS-IS Sequence Numbers PDU	
Case Study: Stub Areas	531	Format	646
Case Study: Totally Stubby Areas	536	Configuring Integrated IS-IS	647
Case Study: Not-So-Stubby Areas	537	Case Study: A Basic Integrated IS-IS	
Case Study: Address Summarization	545	Configuration	650
Case Study: Authentication	550	Case Study: Changing the Router	
Case Study: Virtual Links	553	Types	655
Case Study: OSPF on NBMA Networks		Case Study: An Area Migration	660