Introduction,
and Performance

B &1L

Elfriede Dustin
[%] Jeff Rashka

\
/ —/‘\r\
% =
ra <2 he \@\".;-f?‘r
/ Az e
\!T-'\\)) i P
73//‘;’\:*
22 ©
PO
Hee
Ghee
Hee
i
:w,‘
44
A
~

Addison

PEARSON

Wesley

1

RETEIBRAS

B 30 4L] 1 9 &
— AT BEEEY

Elfriede Dustin

[3£] Jeff Rashka E 2
John Paul

WK N A
Ak

RERN
APR—Fh d RN EHES B RRE RO TR, ERMGER
AREH. BENRIOERORAEINRAR, SHRETERGFRIB P
TR B LA BT R ER.
B ER B FE T EHLFE AR RENEM, e
ARERERNFARAREE,

EISBN: 0-201-43287-0

Automated Software Testing: Introduction, Management, and Performance, ie
Elfriede Dustin, Jeff Rashka, John Paul

Copyright © 1999 by Addison-Wesley Longman

Original English language edition published by Addison-Wesley Longman.

All right reserved.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

NRFPEARCAERA (FEETREEFE. RIRITEARAPEERS
WX) HMRIT.

A4 HERGHE Pearson Education (34 HARKER) HARHRE,
EHREETHHE.
EHMRREERSFBIZS: EF 01-2003-0543 €

$ £: B hKREME - AT FHES5EH
H oW &F: BEXFHBAEUREEREEMAE,BB% 100084)
http://www. tup. com. cn
http://www. tup. tsinghua. edu. cn
BERSE: ABEA
BN R F: b ARICFEER
&7 & FEBERELERGH
: 8801230 1/32 EP¥ . 19.125
;200343 A 1AR 2003 4E3 A 1L REIR
: ISBN 7-89494-044-5
: 0001~3000
: 39.00 56

Ha#tFH
S 2 m N N

Automated
Software Testing

Automated
Introduction, Management,

and Performance

Elfriede Dustin
Jeff Rashka
John Paul

A
vy
ADDISON-WESLEY
Boston ¢ San Francisco * New York ¢ Toronto * Montreal
London ¢ Munich * Paris ¢ Madrid
Capetown ¢ Sydney * Tokyo * Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and we were aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

DISCOVER®, DISCOVER's Information Model™, BIRCOVER Y2K™, and Tree Pattern Matching™ are
trademarks of Software Emancipation Technology, Inc.

The authors and publisher have taken care in the preparation of this book. but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information,
please contact:

Pearson Education Corporate Sales Division
One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419

Visit AW on the Web: www.awl.com/ cseng/

Library of Congress Cataloging-in-Publication Data

Dustin, Elfriede.

Automated software testing : introduction, management, and

performance / Elfriede Dustin, Jeff Rashka, John Paul.
p. <cm.

Includes bibliographical references.

ISBN 0-201-43287-0

1. Computer software—Testing—Automation. 1. Rashka, Jeff.
I1. Paul, John, 1968- . 1L Title,
QAT76.76.T48D87 1999
005.1"4—dc21 99-25423

. CIP

Copyright © 1999 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-43287-0

Text printed on recycled paper
3456789 10—MA—03020100
Third printing, June 2000

_Preface

Automated Software Testing addresses the challenge for today’s software professionals
who are faced with real schedule deadlines and need to introduce, manage, and per-
form automated testing on a project. The book addresses automated testing within
a client-server or Web environment.

The focus of this book is the pragmatic concerns and information needed by the
software test engineer/manager who faces the necessity of performing testing
more thoroughly and quickly. By the same token, these same concerns may apply to
the software developer who has the responsibility for development testing (that is,
unit and integration testing) and, on some projects, system testing. The book also
represents an informative guide that bolsters the ability of the quality assurance
engineer to perform quality reviews on test design, test procedures, and the results
of test activities.

The software project manager, who is responsible for the overall development
effort, may also find this book useful. The text provides the project manager with
guidelines concerning the goals and objectives of the testing effort and the decision
about whether to automate testing. It also offers guidance on introducing auto-
mated testing on a project and outlines the processes for performing test planning,
design, development, execution, and evaluation.

The authors have worked intimately with a number of automated testing pro-
fessionals around the world, who were generous enough to share their problems
and concerns. One primary concern voiced by these test engineers related to the fact
that the test industry does not have the kind of structured methodologies that
developers have traditionally enjoyed. Similarly, project managers, test managers,
and test engineers may not be familiar with the kinds of approaches that are required
to perform automated testing as opposed to the traditional test approach.

Clearly, the emphasis on automated testing represents a paradigm change for
the software industry. This change does not simply involve the application of tools

xvi Preface

and the performance of test automation. Rather, it is pervasive across the entire test
life cycle and the system development life cycle. The approach taken by project man-
agers, test managers, software engineers, and test engineers is altered as a result. For
software professionals to successfully make the leap to automated testing, structured
approaches to testing must be embraced.

Automated Software Testing is revolutionary in that it promulgates a new struc-
tured, building-block approach to the entire test life cycle, while also providing rel-
evant test automation and associated test management guidance needed by industry
test professionals.

Automated Testing

~7

Software project managers and software developers building today's applications
face the challenge of doing so within an ever-shrinking schedule and with minimal
resources. As part of their attempt to do more with less, organizations want to test
software adequately, but as quickly and thoroughly as possible. To accomplish this
goal, organizations are turning to automated testing.

Faced with this reality and realizing that many tests cannot be executed manu-
ally, such as simulating 1,000 virtual users for volume testing, software professionals
are introducing automated testing to their projects. While needing to introduce
automated testing, software professionals may not know what's involved in intro-
ducing an automated test tool to a software project, and they may be unfamiliar
with the breadth of application that automated test tools have today. Automated
Software Testing provides guidance in these areas.

The growth of automated test capability has stemmed in large part from the
growing popularity of rapid application development (RAD), a software develop-
ment methodology that focuses on minimizing the development schedule while
providing frequent, incremental software builds. The objective of RAD is to engage
the user early and throughout design and. development of each build so as to refine
the software, thereby ensuring that it more closely reflects the needs and preferences
of the user. In this environment of continual changes and additions to the software
through each software build, where requirements are encouraged to evolve, soft-
ware testing takes on an iterative nature itself. Each new build is accompanied by a
considerable number of new tests as well as rework to existing test scripts, just as
there is rework on previously released software modules. Given the continual
changes and additions to software applications, automated software testing becomes
an important contgol mechanism to ensure accuracy and stability of the software
through each build.

As noted above, a primary goal of RAD is to shorten the overall development
schedule, by addressing the riskiest aspects of. development in early builds. As a

Preface xvii

result, test activities are undertaken at the start of the initial RAD cycle and through
each subsequent RAD cycle as well. As noted in Part III of this book, test design
and development represent a complex undertaking. A test effort, in fact, may be as
time-consuming as the effort required to develop the software application. When
the project involves the integration of commercial off-the-shelf (COTS) products,
for example, the test effort may even require more resources than software develop-
ment, Instances where the test team does not participate in software specification or
when test is not initiated soon enough pose a risk to the project. In these situations,
potential outcomes include an incomplete software test effort, an insufficient test
schedule, and an unplanned extension to the development schedule to accommo-
date testing.

Much of the test effort required on a project now needs to be supported by
automated test tools. Manual testing is labor-intensive and error-prone, and it does
not support the same kind of quality checks that are possible with an automated test
tool. The introduction of an automated test tool can replace mundane manual test
activities with a more efficient and repeatable automated test environment, which
itself improves test engineer morale and retention.

Although some automated test tools began as capture and playback tools, the
functionality and capabilities of automated test tool suites have been expanding.
Automated test capabilities for software products include testing of the graphical
user interface, requirements compliance, load performance, code coverage, Web
interface, network communications, memory leakage, and more. New capabilities
continue to be added to keep pace with the growing demand for test support.

ATLM—Automated Test Life-Cycle Methadology

This book concentrates on the concerns of the software test professional within the
framework of an Automated Test Life-cycle Methodology (ATLM). ATLM is a
structured methodology geared toward ensuring successful implementation of auto-
mated testing. The ATLM approach mirrors the benefits of modern, rapid applica-
tion development efforts, where such efforts engage the user early in the
development cycle. The end user of the software product is actively involved
throughout analysis, design, development, and test of each software build, which is
augmented in an incremental fashion.

The ATLM incorporates a multistage process consisting of six components. It
supports the detailed and interrelated activities that are required to decide whether
to acquire an automated testing tool. The methodology takes into account the
process of introducing and optimizing an automated test tool and addresses test
planning, analysis, design, development, execution, and management. The scope of
the test program is outlined within the test plan, as a top-level description of test

xviii Preface

approach and implementation. The scope is further refined through the definition
of test goals, objectives and strategies, and test requirernents. Similar to software
application development, test requirements are specified before test design is con-
structed. Likewise, the test program must be mapped out and consciously designed
to ensure that the most efficient and effective tests for the target application are per-
formed. Test design is developed through graphical portrayals of the test effort, so
as to give project and test personnel a mental framework on the boundary and scope
of the test program.

Test Traini

-

The evolution of automated testing has given birth to new career opportunities for
software engineers. In fact, while the demand for automated software test profes-
sionals has exploded, community colleges and universities have not produced a re-
ciprocal response to help support industry demand.

Universities, corporations, and government operations already have been proac-
tive in responding to changes in the software industry and have implemented soft-
ware test and quality assurance courses. For example, George Mason University
(GMU) provides software test and quality assurance courses (see the GMU Web
site at http://www.isse.gmu.edu/ for more information). Kansas State University
(KSU) offers students several courses on the subject of software test and quality
assurance and other courses that touch on the subject (see the KSU Web site at
http:/ /www.ksu.edu/).

Purdue University offers two undergraduate courses in software engineering
that cover software testing and reliability. Purdue also has established a software
engineering research center (http://serc.uoregon.edu/serc/), in which faculty
from eight universities and representatives from eleven companies participate.
Among other areas this center supports software quality research. For more infor-
mation, see the Purdue University Web site at http://www.purdue.edu/.

The North Seattle Community College has established one of the most pro-
gressive testing curricula in the country. The college offers three levels of software
testing courses (introduction, automation, and leadership) and one- and two-year
software testing programs. For more information about these courses and pro-
grams, visit its Web site at http://nsccux.sccd.ctc.edu/. Information concerning
additional university and industry training resources is available on the authors’ Web
site at http://www.autotestco.com/. For corporate and other test training organi-
zations, see Table C.3 in Appendix C.

Automated Software Testing is intended to help in classroom instruction on soft-
ware testing that uses modern automated test tool capabilities. The book provides

Preface xix

students with an introduction to the application and importance of software test,
and it describes the different kinds of automated tests that can be performed.
Instruction continues with the definition of the test approach, the roles and respon-
sibilities of the test team, test planning, test design, test script development, test exe-
cution, defect tracking, and test progress reporting.

About the Authors

Automated Software Testing was developed by three software industry professionals.

Elfriede Dustin has performed as a computer systems analyst/programmer
developing software applications and utilities, process and data modeling using
CASE tools, and system design simulation models. She has experience supporting a
variety of system application development projects, including health, financial, logis-
tic, and enterprise information management systems. In addition, Elfriede has been
responsible for implementing the entire development life cycle, from requirements
analysis, to design, to development, to automated software testing. She has been a
test manager and a lead consultant guiding the implementation of automated test-
ing on many projects. Because of her automated test expertise, she has been sought
out to help maodify the capabilities of commercial test tool products, where her use
of and feedback on test products have proved invaluable.

Jeff Rashka has managed a multitude of significant information system and sys-
tems integration projects. System applications on which he has served as manager
include worldwide transportation asset management, enterprise information man-
agement, financial management, bar-coded inventory management, and shipboard
information systems. Jeff also has process improvement management experience in
implementing the guidelines contained within the Software Engineering Institute’s
Capability Maturity Model (CMM).

John Paul has worked as a senior programmer/analyst on financial and bud-
geting systems as well as a host of other information systems. His software develop-
ment leadership responsibilities have included system analysis and design,
application prototyping, and application development using a number of different
methodologies and programming techniques. His software development responsi-
bilities have included application testing using automated test tools. John has also
assumed a lead role in the performance of year 2000 compliance testing.

The authors have applied their collective knowledge of software engineering, auto-
mated testing, and management to develop a book that addresses the pragmatic con-
cerns and information needed by the software test engineer and manager. Autornated
Software Testingis designed to be a useful—and practical—guide for software engineers
and software project managers who are responsible for software test activities.

XX Preface

This book’s organization correlates with the phases, tasks, and steps of the ATLM.
The sequence of the book is fashioned in a purposeful way. It addresses the reader as
if he or she had just been handed a note giving that individual the responsibility for
automated software testing on a project. A first question might be, “What exactly is
automated testing, and why do I need it?” Part I of the book answers this question
and provides other fundamental instruction allowing the would-be test engineer to
approach the new responsibility with confidence. The reader is then guided through
the decision to automate testing as well as automated test tool selection and evalua-
tion.

After receiving this fundamental instruction, the test engineer would have sev-
eral more questions: “What is involved in setting up the tool?” “How do I get the
test team in place?” “What early test planning is required?” Part IT answers these
questions. Specifically, the process for introducing an automated test tool is outlined
and guidelines for structuring the test team are provided.

Part I1I focuses on automated test planning, analysis, design, and test automa-
tion (programming). This section of the book addresses test design techniques,
which are comparable to the structured software design techniques introduced over
the past 20 years. Specifically, it highlights the discipline required in the design of
test automation. The goal is to give useful information on test design and test case
development, so that the test engineer doesn’t have to discover (by trial and error)
how to put together a good test design and set of test procedures.

Part IV helps the reader address several additional questions: “What's involved
in the performance of test?” “How do I manage my test schedule?” “How do I
document and track defects?” This section provides guidelines pertaining to test
execution, defect tracking, and test program status tracking. A set of best practices
for the development and execution of automated test procedures is provided to
assist test professionals in executing test activities in an efficient manner.

Overall, the book seeks to allay the concerns of the software test professional
within the framework of the ATLM. ATLM is a structured methodology, and one
that is geared toward ensuring successful implementation of automated testing.
Readers with questions and comments may contact the authors via their home. page
at http://www.autotestco.com/. This Web site also provides more information on

automated software testing and resources that are available to support automated
software testing programs.

___Acknowledgments

Special thanks to Oliver Jones and Chris Dryer for their enthusiasm and support of
the book. Their encouragement, positive feedback, and valuable comments helped
enhance the material presented here.

Thanks to all the testing professionals, such as Boris Beizer, for their test indus-
try leadership and their persistent pursuit of software quality. We are especially grate-
ful to all the individuals below whose contributions made this book possible.

* Brad Appleton * Bruce Katz

» Stacey Cornelius » Kirk Knoernschild
* Matthias Daigl * Matthew Leahy

¢ Chris Dryer . * Tilo Linz

* Joyce Enos * lan Long

* Robert L. Glass ¢ Brett Schuchert

* Sam Guckenheimer * Robert Schultz

* Dave Gustafson * Andy Tinkham

* Richard J. Hedger + Will Tracz

* Oliver Jones * Chris Welch

* Anuradha Kare

EvrrIEDE DUSTIN
JEFF RASHKA
JoHN PAauL

CD-ROM Warranty

Addison Wesley Longman, Inc., warrants the enclosed disc to be free of defects in
materials and faulty workmanship under normal use for a period of ninety days after
purchase. If a defect is discovered in the disc during this warranty period, a replace-
ment disc can be obtained at no charge by sending the defective disc, postage pre-
paid, with proof of purchase to:

Editorial Department

Computer and Engineering Publishing Group
Addison-Wesley

One Jacob Way

Reading, Massachusetts 01867-3999

After the ninety-day period, a replacement disc will be sent upon receipt of the
defective disc and a check or money order for $10.00, payable to Addison Wesley
Longman, Inc.

Addison Wesley Longman, Inc., makes no warranty or representation, either
expressed or implied, with respect to this software, its quality, performance, mer-
chantability, or fitness for a particular purpose. In no event will Addison Wesley
Longman, Inc., its distributors, or dealers be liable for direct, indirect, special, inci-
dental, or consequential damages arising out of the use or inability to use the soft-
ware. The exclusion of implied warranties is not permitted in some states.
Therefore, the above exclusion may not apply to you. This warranty provides you
with specific legal rights. There may be other rights that you may have that vary

from state to state. The contents of this CD-ROM are intended for personal use
only.

More information and updates are available at:
http://www.awl.com/ cseng/ titles/0-201-43287-0

Contents

Preface
Acknowledgments

Part |
What Is Automated Testing?

1 The Birth and Evolution of Automated Testing

1.1 Automated Testing

1.2 Background on Software Testing

1.3 The Automated Test Life-Cycle Methodology (ATLM)
1.3.7 Decision to Automate Test
1.3.2 Test Tool Acquisition
1.3.3 Automated Testing Introduction Phase
1.3.4 Test Planning, Design, and Development
1.3.5 Execution and Management of Tests
1.3.6 Test Program Review and Assessment

1.4 ATLM'’s Role in the Software Testing Universe

1.4.1 ATLM Relationship to System Development
Life Cycle

1.4.2 Test Maturity Model (TMM)—Augmented by
Automated Software Testing Maturity

1.4.3 Test Automation Development
1.4.4 Test Effort
1.5 Software Testing Careers

3

~N D W W

10

12
13
14
14
14

14

15
19
21
22

Contents

2 Decision to Automate Test

2.1

22

2.3

3 Automated Test Tool Evaluation and Selection

3.1

3.2

Overcoming False Expectations for Autornated Testing

2.1.1
212
21.3
2.1.4
2.1.5
2.1.6
2.1.7

Automatic Test Plan Generation
Test Tool Fits All

Immediate Test Effort Reduction
Immediate Schedule Reduction
Tool Ease of Use

Universal Application of Test Automation

One Hundred Percent Test Coverage

Benefits of Automated Testing

2.21

2.2.2 Improvement of the Quality of the Test Effort
2.2.3 Reduction of Test Effort and Minimization of Schedule
Case Study: Value of Test Automation Measurement

Production of a Reliable System

Acquiring Management Support

2.3

The Organization’s Systems Engineering Environment

3.1

31.2

313
314
315
316
317
318
319

Test Tool Proposal

Third-Party Input from Management, Staff, and

Custoemners and End Users

Tool Criteria Reflecting the Systems Engineering

Environment

Level of Software Quality

Help Desk Problem Reports

Budget Constraints

Types of Tests

Long-Term Investment Censiderations
Test Toel Process

Avoiding Shertcuts

Tools That Support the Testing Life Cycle

3.21
322
323
3.24
325
326
327

Business Analysis Phase Tools
Requirements Definition Phase Tools
Tools for the Analysis and Design Phase
Programming Phase Tools

Metrics Tools

Other Testing Life-Cycle Support Tools
Testing Phase Tools

29
32
32
33
33
34
34
35
36
37
38
43
49
52
54
56

67
70

71

72
73
74
74
74
75
75
75
76
79
80
82
83
85
86
86

Contents

3.3 Test Tool Research 89
3.3.1 Improvement Opportunities 89
3.4 Evaluation Domain Definition 96
3.5 Hands-On Tool Evaluation 98
3.5.1 Evaluation Report 99
3.5.2 License Agreement 101
Part 11l
Introduction of Automated Testing to a Project
4 Automated Testing Introduction Process 107
4.7 Test Process Analysis 110
4.1.1 Process Review 112
4.1.2 Goals and Objectives of Testing 116
Case Study: Test Objectives and Strategies 119
4.1.3 Test Strategies 120
4.2 Test Tool Consideration 133
4.2.1 Review of Project-Specific System Requirements 135
4.2.2 Application-Under-Test Overview 137
4.2.3 Review of Project Schedule 138
4.2.4 Test Tool Compatibility Check 139
4.2.5 Demonstration of the Tool to the Project Team 140
4.2.6 Test Tool Support Profile 141
4.2.7 Review of Training Requirements 143
§ Test Team Management 147
5.1 Organizational Structure of a Test Team 149
5.1.1 Stovepipe Test Team 151
5.1.2 Centralized Test Team 151
5.1.3 IV&YV Test Team 153
5.1.4 Systems Methodology and Test Team 154
5.1.5 Test Team Summary 155
5.2 Test Program Tasks 157
5.3 Test Effort Sizing 163
5.3.1 Test Team Sizing Methods: An Overview 165
5.3.2 Development Ratio Method 165
5.3.3 Percentage Method 166

5.3.4 Test Procedure Method 167

