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CHAPTER 1

Basic Elements
and Laws

¢

YA

® INTRODUCTION

The study of electric circuits is fundamental in electrical engineering education,
and can be quite valuable in other disciplines as well. The skills acquired not

only are useful in such electrical engineering areas as electronics, communications,
microwaves, control, and power systems but also can be employed in other seemingly
different fields.

By an electric circuit or network we mean a collection of electrical devices (for
example, voltage and current sources, resistors, inductors, capacitors, transformers,
amplifiers, and transistors) that are interconnected in some manner. The various
uses of such circuits, though important, is not the major concern of this text.
Instead, our prime interest will be with the process of determining the behavior of
a given circuit—which is referred to as analysis.

We begin our study by discussing some basic electric elements and the laws
that describe them. It is assumed that the reader has been introduced to the
concepts of electric charge, potential, and current in various science and physics
courses in high school and college.

1.1 IDEAL SOURCES

Electric charge' is measured in coulombs (abbreviated C) in honor of the French
scientist Charles de Coulomb (1736-1806); the unit of work or energy—the joule

' An electron has a negative charge of 1.6 x 107'° C.
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(J)—1s named for the British physicist James P. Joule (1818-1889). Although the unit
for energy expended on electric charge 1s J/C, we give it the special name volt (V) in
honor of the Italian physicist Alessandro Volta (1745-1827), and we way that it is a
measure of electric potential difference or voltage. These units are part of the Systéme
International d’Unités (International System of Units). Units of this system are referred
to as SI units. Unless indicated to the contrary, SI units are the units used in this
book.

An ideal voltage source, which is represented in Fig. 1.1, is a device that pro-
duces a voltage or potential difference of v volts across its terminals regardless of
what is connected to it.

For the device shown in Fig. 1.1, terminal 1 is marked plus (+) and terminal 2
is marked minus (—). This denotes that terminal 1 is at an electric potential that is
v volts higher than that of terminal 2. (Alternatively, the electric potential of terminal
2 is v volts lower than that of terminal 1.)

The quantity v can have either a positive or a negative value. For the latter
case, 1t is possible to obtain an equivalent source with a positive value. For suppose
that v = — 5V for the voltage source shown in Fig. 1.1. Then the potential at terminal
1 is —5 V higher than that of terminal 2. However, this is equivalent to saying that
terminal 1 is at a potential of + 5V lower than terminal 2. Consequently, the two

ideal voltage sources shown in Fig. 1.2 are equivalent.

b

Terminal | Terminal | ' Terminal 1
vvo]ts( ) -5 V( ) = SV( i >
Terminal 2 Terminal 2 | Terminal 2
Fig. 1.1 Ideal voltage source. Fig. 1.2 Equivalent ideal voltage sources.

In the discussion above, we may have implied that the value of an i1deal voltage
source is constant, that is, it does not change with time. Such a situation is plotted in
Fig. 1.3 for the case that v = 3 V. For occasions such as this, an ideal voltage source
is commonly represented by the equivalent notation shown in Fig. 1.4. We refer to
such a device as an ideal battery. Although an actual battery is not ideal, there are
many circumstances under which an ideal battery is a very good approximation. One

v
3
+‘

) 3V — IV =

1 —L—q
[

0 |

Fig. 1.3 Constant voltage. Fig. 1.4 Battery symbols.
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such example is the 9-V battery that you use for your portable transistor radio—or
you may have the type that uses four or six C or D 13-V batteries. A 12-V automobile
storage battery is another case in point. In general, however, the voltage produced by
an ideal voltage source will be a function of time. A few of the multitude of possibie

voltage waveforms are shown in Fig. 1.5.

v B
% 4
. A'n'a'n'n'n )
(a) (b)
[} U
A
(c) (d)

Fig. 1.5 Typical voltage waveforms.

Since the voltage produced by a source is, in general, a function of time, say
v(t), then the most general representation of an ideal voltage source is that shown in
Fig. 1.6. There should be no confusion if the units “volits” are not included in the
representation of the source. Thus, the ideal voltage source in Fig. 1.7 is identical to
the one in Fig. 1.6 with “volts” being understood.

v(t) volts v(t)

Fig. 1.6 Generalized ideal voltage source. Fig. 1.7 Equivalent generalized ideal
voltage source.
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'DRILL EXERCISE 1.1

I amperes

Fig. 1.8

An ideal voltage source has a value of 1t) = 10e~* V, What is the voltage produced
by this source when (a) t = 0 seconds, (b) t = 1 second, (c) t = 2 seconds, (d) t = 3

seconds, and (e) ¢t = 4 seconds?
Answer: (a) 10 V;(b) 3.68 V; (c) 1.35V;(d) 0.498 V: (e) 0.183 V

Placing an electric potential difference (voltage) across some material generally
results in a flow of electric charge. Negative charge (in the form of electrons) flows
from a given electric potential to a higher potential. Conversely, positive charge tends
to flow from a given potential to a lower potential. Charge is usually denoted by g,
and since this quantity 1s generally time dependent, the total amount of charge that
1S present in a given region is designated by g(t).

We define current, denoted i(z), to be the flow rate of the charge; that is,

i(t) = 24lt)

dt
1s the current in the region containing ¢(t). Following the convention of Benjamin
Franklin (a positive thinker), the direction of current has been chosen to be opposite
to the direction of electron flow. The units of current (coulombs per second, or C/s)
are referred to as amperes (A) or amps for short, in honor of the French physicist
Andre Ampere (1775-1836).

An ideal current source, represented as shown in Fig. 1.8, is a device which,
when connected to anything, will always move I amperes in the direction indicated

by the arrow.

Terminal 1

Terminal 2

Ideal current source.

As a consequence of the definition, it should be quite clear that the jdeal current
sources 1n Fig. 1.9 are equivalent.

Terminal 1 Terminal |
—BA( : ) =3A( : ) i(t)( i )
Terminal 2 ! -0 Terminal 2

Fig. 1.9 Equivalent ideal current sources. Fig. 1.10 Generalized ideal

current source.
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Again, in general, the amount of current produced by an ideal source will be
a function of time. Thus, the general representation of an ideal current source 1s
shown in Fig. 1.10, where the units “amperes” are understood.

DRILL EXERCISE 1.2

The total charge in some region is described by the function g(t) = 3¢ * +

0.02sin 1207t C. Find the magnitude of the current in this reglon
Answer: —12e”* + 7.54 cos 120nt A

1.2 RESISTORS AND OHM’S LAW

Suppose that some material is connected to the terminals of an ideal voltage source
v(t) as shown in Fig. 1.11. Suppose that v(t) = 1 V. Then the electric potential at the
top of the material is 1 V above the potential at the bottom. Since an electron has
a negative charge, electrons in the material will tend to flow from bottom to top.
Therefore, we say that current tends to go from top to bottom through the material.
Hence, for the given polarity, when o(t) is a positive number, i(tr) will be a positive
number with the direction indicated. If v(f) = 2 V, again the potential at the top is
greater than at the bottom, so i(t) will again be positive. However, because the poten-
tial 1s now twice as large as before, the current will be greater. (If the material is a
“linear” element, the current will be twice as great.) Suppose now that v(f) = 0 V. Then
the potentials at the top and the bottom of the material are the same. The result is
no flow of electrons and, hence, no current. In this case, i(t) = 0 A. But suppose that
v(t) = —2 V. Then the top of the material will be at a potential lower than at the
bottom of the material. A current from bottom to top will result, and i(z) will be a
negative number. Due to the physical law of the conservation of electric charge, i(t)
goes through the voltage source as indicated.

v(t)

i)

Fig. 1.11

Material with an applied voltage.

If in Fig. 1.11 the resulting current i(t) is always directly proportional to the
voltage for any function (t), then the material is called a linear resistor, or resistor
for short.
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Since voltage and current are directly proportional for a resistor, there exists
a proportionality constant R, called resistance, such that

v(t) = Ri(r)
In dividing both sides of this equation by i(t), we obtain
(1)
()

The units of resistance (volts per ampere) are referred to as ohms' and are denoted
by the capital Greek letter omega, Q2. The accepted circuit symbol for a resistor whose

resistance i1s R ohms is shown in Fig. 1.12. A plot of voltage versus current for a
(linear) resistor is given in Fig. 1.13.

R

R
O———AAM——0

Fig. 1.12 Circuit symbol for a resistor.

Fig. 1.13 Plot of voltage versus current for a
resistor.

It was Ohm who discovered that if a resistor R has a voltage o(t) across it and
a current i(t) through 1t, then if one i1s the cause, the other 1s the eflect. Furthermore,

if the polarity of the voltage and the direction of the current are as shown in Fig. 1.14,
then 1t 1s true that

v(t) = Ri(t)
(1) 4
\\\. — R ad
/// * vty N

.

Fig. 1.14 Current and voltage convention
for Ohm’s law.

P L



/
7.2 RESISTORS AND OHM'S LAW

This equation is often called Ohm’s law. From it, we may immediately deduce that

vl ()
R = ;(fi and i(t) = R

These last two equations are also referred to as Ohm’s law.

EXAMPLE 1.1 o .
For the resistor given in Fig. 1.14, suppose that R = 10 Q. When i(t) = 2 A, then

v(t) = Ri(t) = 10(2) = 20 V.

But, now consider the case that i(f) = —3 A. Under this circumstance, v(t) =
Ri(t) = 10(—3) = —30 V. This can be represented either as shown in Fig. 1.15(a), or
alternatively, as shown in Fig. 1.15(b), where i,(¢) = — i(t).
N )= 3A 10Q 7 SN ht=3A 109 el
—— === A - —— ———S0————AAA € ———
- Y oon= 30V R e T oony= 30V T .
(a) v(r) = Ri(t) (b) v(¢) = —Riy ()
Fig. 1.15 Equivalent forms of Ohm's law.
. ) e oLl e e
From Example 1.1, we see that because of the use of negative numbers, we can
have situations where currents are indicated going through resistors from + to —
as depicted in Fig. 1.14, or going from — to + as in Fig. 1.16. For the former case,
Ohm’s law is v(t) = Ri(t). However, for the latter case, since Fig. 1.17 is equivalent to
Fig. 1.16, and since Fig. 1.17 is in the form of Fig. 1.14, we use Ohm’s law to write
its alternative version
v1(t) = R[—i,()]
or
ve(t) = —Ri, ()
. ”~”
S a0 R 7 N -~
- AN - ——- P -
’.-'-'"’ Ul(‘” x\\ /’__.-* + Ul(” - \\\
Fig. 1.16 Situation requiring negative sign Fig. 1.17 Equivalent form of Fig. 1.186.

for Ohm’s law.
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EXAMPLE 1.2
Consider the circuit shown in Fig. 1.18. We use the letter “k™ to represent the prefix

“kilo,” which indicates a value of 10°. Following is a table of the more common
symbols.

l i (1) Value Prefix Symbol
1000 £2 = 1 k2 10~ ¢ pico P
10°° nano n
10°° micro 7
sz(n 1073 milh m
10° kilo k
Fig. 1.18 Circuit for Example 1.2 106 mega M
10° giga G

For the circuit 1in Fig. 1.18, the voltage across the 1-k{2 resistor 1s, by the definition
of an ideal voltage source, v(t) = 10 V. Thus, by Ohm’s law, we get

v(t) 10 |

R 1000=100—0.01A=10mA

i (1) =

and

| (1) 10 1
= 2 _ _ — _00lA=—10mA
(1) R 000~ 100~ 0 m

Note that i,(t) = —i,(t) as expected.
For the circuit shown in Fig. 1.19, by the definition of an ideal current source,

i(t) = 25 uA = 25 x 107 ¢ A. By Ohm’s law, we have that

o(t) = —Ri(t) = —(2 x 109)(25 x 107%) = —-S0 V

+
25 pA R =2 MS) v(t)

ioll

Fig. 1.19. Another circuit for Example 1.2.

.-— e m—— e e = - e— e m— = e e — A mLE R 4. AR FE F oA IR P —— ——— e —— —————— e e . — & — . .m I . e s — fm e e i m tiem e ————— J— e e e e = - R e = e — e = — RS —— e - ==
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DRILL EXERCISE 1.3

For the circuit shown in Fig. DE1.3, find (a) v,, (b) v,, (¢) i3, (d) fas and (e) R.
Answer: (a) —1V;(b)6V; (c) —2 mA; (d) 2 mA; (¢) 3 K _

‘4 4 k2

Fig. DE1.3

Given a resistor R connected to an ideal voltage source v(t) as shown in Fig. 1.20,
we conclude the following. Since i(t) = v(t)/R for any particular ideal source v(t), the
amount of current i) that results can be made to be any finite value by choosing the
appropriate value for R (e.g., to make i(t) large, make R small). Thus, we see that an
ideal voltage source is capable of supplying any amount of current, and that amount
depends on what is connected to the source—only the voltage is constrained to be
u(t) volts at the terminals.

l“”
+

v(t) v(t) R

Fig. 1.20 Current through a voltage source. Fig. 1.21 Voltage across a current source.

If v(z) is positive, then for the circuit shown in Fig. 1.21, the current comes out
of the + side of the voltage source (assuming a positive resistance, or course). How-
ever, as we shall see later, when other types of elements are connected to a voltage
source, the current through the voltage source can be in either direction—the direc-
tion depends on what exactly is connected to the source.

When a resistor R is connected to an ideal current source as in Fig. 1.21, we
know that u(t) = Ri(t). Therefore, for a given current source i(t), the voltage v{t) that
results can be made to be any finite value by appropriately choosing R[e.g., to make
(t) large, make R large]. Hence, we conclude that an ideal current source is capable
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of producing any amount of voltage across its terminals, and that amount depends
on what is connected to the source—only the current 1s constrained to be i(t) amperes
through the source.

For the circuit in Fig. 1.21, if i(¢) is positive, then the polarity of the (positive-
valued) voltage v(t) is as indicated. In general, however, the polarity (as well as the
magnitude) of the voltage across a current source depends on what exactly 1s con-

nected to the source. |
Physical (nonideal) sources do not have the ability to produce unlimited cur-

rents and voltages. As a matter of fact, an actual source may approximate an ideal

source only for a limited range of values.
Now consider the two ideal voltage sources whose terminals are connected as

shown in Fig. 1.22. By definition of an i1deal 3-V source, v(t) must be 3 V. However,
by the definition of a 5-V ideal voltage source, v(t) = 5 V. Clearly, both conditions
cannot be satisfied simultaneously. (Note that connecting a resistor, or anything else,
for that matter, to the terminals will not alleviate this problem.) Therefore, to avoid
this paradoxical situation, we will insist that two ideal voltage sources never have

their terminals connected together as in Fig. 1.22; the only exception i1s two sources
with the same value and the same polanty.

Fig. 1.22 Example of nonallowable
- caonnection of ideal voltage sources.

Now consider a resistor whose value is zero ohms. An equivalent representation,
called a short circuit, of such a resistance is given in Fig. 1.23. By Ohm’s law, we

have that
v(t) = Ri(t)=0i(t) =0V

Thus, no matter what finite value i(t) has, v(t) will be zero. Hence, we see that q
zero-ohm resistor is equivalent to an ideal voltage source whose value is zero volts,
provided that the current through it is finite. Therefore, for a zero resistance to be
synonymous with a constraint of zero volts (and to avoid the unpleasantness of infinite
currents), we will insist that we never be allowed to place a short circuit directly

Fig. 1.23 Short-circuit equivalents.
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across a voltage source. In actuality, the reader will be spared a lot of grief by never

attempting this in a laboratory or field situation.
Next consider a resistor having infinite resistance. An equivalent representation,
called an open circuit, of such a situation is depicted in Fig. 1.24, By Ohm’s law,

u(t)
==

0A

i(t)

as long as v(t) has a finite value. Thus, we may conclude that an infinite resistance is
equivalent to an ideal current source whose value is zero amperes. Furthermore, we will
always assume that an ideal current source has something connected to its terminals.

Fig. 1.24 Open-circuit equivalents.

1.3 KIRCHHOFF'S CURRENT LAW (KCL)

It1s a consequence of the work of the German physicist Gustav Kirchhoff (1824 -1887)
that enables us to analyze an interconnection of any number of elements (voltage

sources, current sources, and resistors, as well as elements not yet discussed). We will
refer to any such interconnection as a circuit or a network.

For a given circuit, a connection of two or more elements’ shall be called a
node. An example of a node is depicted in the partial circuit shown in Fig. 1.25. In

%t R, | AT

Node

Fig. 1.25 Portion of a circuit.

" One element can be an open circuit.
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addition to using a solid dot, we may also indicate a node by a hollow dot, as was
done for a terminal. Conversely, we may use a solid dot for the terminal of a device.

We now present the first of Kirchhoff’s two laws, his current law (KCL), which
is essentially the law of conservation of electric charge.

KCL: At any node of a circuit, at every instant of time, the sum of the currents
into the node is equal to the sum of the currents out of the node.

Specifically for the portion of the network shown in Fig. 1.25, by applying KCL
we obtain the equation

1(8) + ig(2) + is(t) = 15(2) + i5(0) + i()

Note that one of the elements [the one in which i;(t) flows] is a short circuit—KCL

holds regardless of the kinds of elements in the circuit.
An alternative, but equivalent, form of KCL can be obtained by considering

currents directed into a node to be positive in sense and currents directed out of a
node to be negative in sense (or vice versa). Under this circumstance, the alternative

form of KCL can be stated as follows:

—_— e - .

KCL: At any node of a circuit, the currents algebraically sum to zero.

Applying this form of KCL to the node in Fig. 1.25 and considering currents directed
in to be positive in sense, we get

i(8) — ip(t) — i5(t) + ia(t) — ift) + is(t)) =0

A close inspection of the last two equations, however, reveals that they are the same!
From this point on, we will simplify our notation somewhat by often abbre-

viating functions of time ¢ such as v(t) and i(t) as v and i, respectively. For instance,
we may rewrite the last two equations, respectively, as

i+ g s =10y + i3+ I
and

i, — Iy — i3+ iy —ig+is=0
It should always be understood, however, that lowercase letters such as v and i, in
general, represent time-varying quantities.’

—

t A constant is a special case of a function of time.

e = Y
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. - e T T L . . . - . T U mma im_m .. i 22w

EXAMPLE 1.3
Let us find the voltage v in the two-node circuit given in Fig. 1.26 in which the

directions of i, i,, and i; and the polarity of v were chosen arbitrarily. (The directions

of the 2-A and 13-A sources are given.)

\:3
2 A
13A 1 2 o 30N

Fig. 1.26 Circuit for Example 1.3.

By KCL (at either of the two nodes), we have

13—, +i,—2—i;=0 (1.1)
From this we can write

i — iy +iy=11

By Ohm’s law,

by

: v : :
11="1‘ 12——"2‘ 13—-3

Substituting these into the preceding equation yields

v U U
r(‘z)*r“

from which
v=6V

Having solved for v, we now find that

Note that a reordering of the circuit elements, as shown in Fig. 1.27, will result in the
same equation (1.1) when KCL is applied. Since Ohm’s law remains unchanged, the

same answers are obtained.
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Fig. 1.27 Circuit equivalent to Fig. 1.26.
._ _ I o _

DRILL EXERCISE 1.4

For the circuit shown in Fig. DE1.4, suppose that i; = 10 mA. Find (a) v, (b) i,,
[C) il: (d] i.?n and (e) i4'
Answer: (a)4.8V;(b) —4.8 mA; (c) 24 mA; (d) —1.6 mA; (e) 1.2 mA

4 k2

Just as KCL applies to any node of a circuit (i.e., to satisfy the physical law of
conservation of charge, the current going in must equal the current coming out), so

must KCL hold for any closed region.
For the circuit shown in Fig. 1.28, three regions have been arbitrarily identified.
Applying KCL to Region 1, we get

I iy +is =1,
Applying KCL to Region 2, we obtain

is +ig+i,=0
and by applying KCL to Region 3, we get

iy i =g+ i,

Note that Region 3 apparently contains two nodes. However, since they are con-
nected by a short circuit, there is no difference in voltage between these two points.




£

Region 3

Fig. 1.28 Circuit with three arbitrarily selected regions.

Region 2
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Therefore, we can shrink the short circuit so as to coalesce the two points into a single
node without affecting the operation of the circuit. Applying KCL at the resulting

node again ytelds i, + i; = iy + .

The converse process of expanding a node into apparently different nodes inter-
connected by short circuits also does not affect the operation of a circuit. For exam-
ple, the portion of a circuit shown in Fig. 1.25 has the equivalent form shown in
Fig. 1.29. Applying KCL to the region indicated results in the same equation as 1is
obtained when KCL is applied to the node shown 1n Fig. 1.25. Thus, although it
may appear that there are four distinct nodes in the region depicted in Fig. 1.29, they

actually constitute a single node.

{@
R, /J\

Node T
equivalent

Fig. 1.29 Equivalent of circuit portion in Fig. 1.25.



