.Q#IEEE
i thE

(RZEDAR)

SOFTWARE PROJECT
MANAGEMENT

» A Unified Framework

e = T P S S R

R B A A,

B Walker Royce

=S % H R i

Higher Education Press
. Pearson Education

H W &

H
k4
| F——— — . RS > S

ESMEEE EHFEBAREI AT S

I BT

— G —EHESR

S ENRRD

SOFTWARE PROJECT
MANAGEMENT

A Unified Framework

Walker Royce

WA HE R
Bl Pearson Education HiREE]

BE=: 01-2002-3774 =

Software Project Management: A Unified Framework, First Edition
Walker Royce

A HEWEA Pearson Education HRUE BB IR, THRSEABHE.

English reprint edition copyright ©2002 by PEARSON EDUCATION NORTH ASIA LIMITED and
HIGHER EDUCATION PRESS. (Software Project Management: A Unified Framework from
Addison-Wesley Publishing Company, Inc.’s edition of the Work)

Software Project Management: A Unified Framework, 1e by Walker Royce, Copyright ©1998.
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special
Administrative Regions of Hong Kong and Macau).

BMEEMSB (CIP) B#

BUETMBEHE. E—HER (£) FHRE (Royce,

W.) #F. —EHF. —du: BEHF LR,
2002. 10

ISBN 7-04-011397-X

I.%... 0I-%... I.%@%F5-FEEH-&
LR - ¥ -EX N.TP311.52

& B R A B 1R CIP B 4% # (2002) 5 081695 5
BB EE—4—HIER BEKR)

Walker Royce

HAEARTT AREHEHRE MBHLE 010-64054588
i AERTEABERDEEESS S %353 800-810-0598

M BIARES 100009 B #f hitp://www.hep.edu.cn
* N 010-64014048 http://www.hep.com.cn

2 # FEPEILRRTH
B B deshREDRIARA R

F A& 787x1092 1/16 BB 2002410 AF 1R

En ¥ 27.25 En ¥R2002 F 10 B 1 IKEDRI
8 670000 £ #r 3000

ABART. FR. BRERREDE, FHHTUWASHERTRRAL.
IRARFR A TRARSLTT

H KR i% BP

20 K, LU EHNPBEHEARARENEERNEFREAMYREF. HE. 5.
HEMINETETRADH. EERFRANAE LR, ¥z THREEEELE
FlwEHRRE, AHFERERT FENER.

BN AL, ARHMEREMANWTO, RS LHEREEWEmEI. XER
BV ERE 20 L RBBTAELR, BEEREAERML, EE50F. ZRZE
ERML, THRALE. BREEANKEAENER T LHEGREFEY, REH
WEATREERFRRAANRERKE. SIHEMERFPEARERN, EFL
B ERIE T RIGERRIICELY, RRF RN pRERARBRENE SEHRA
FREN —~MEEERE,

Hl, HEHEREGERTERHELFREEMFAREAHKMA NI A RET
. BHRRETHEAER, —REBAT, —RERKNE. EFSHT HRLEEHR
¥R ABMEFANEAT, EXUBREANHE, F-RBZETRGEHFARE
B 20 2 MG AHMEELRBELR. XBEHMEREZE T ZHHE, KPHLOR
HREREHFHERFARFL TR BN LR ERBREERERREHH#RARS
&, RETEHNERAERBREERZTHN-AAT, TEMELEREES, 5EN
FEBGBEMHY, XEHAMERBE TIHHRIHESERELOREERE, EKA TR
Bl R4M. EHBREFEEER.

R, HEHEALE 3S IEktst R EMREFRNZER, IR WERE
ERFPRAAWEEEHEZ —. AWK EFRAKFIE, SEEREFRNHTE
HRFAFERELE, BERTHRBAHBEAX X ORGFRE BT RERE T — 5
MENEREERS, EREARER, UFEERGHFRFEXERY.

BNFEXBHFALNIHEER TTREREFFFREBHFRARAHEAK
T, HAEEFRERAKTHEE, mREF-AMEFEARESHNERES EBHRA
F, REFRHGBAEM. B RAITWKES KBFfo& KO HATABAM T TR
BEFRHENAAED. BREF A hep.cs@263.net.

B EHE H R
Z—OO_4ENA

This work is dedicated to my
father, Winston Royce, whose
vision and practicality were
always in balance.

—Walker

Foreword

his book blazes the way toward the next generation of software management prac-

tice. Many organizations still cling to the waterfall model because, even with its
shortfalls, it provides the most fully elaborated management guidelines on how to
proceed in a given software situation.

It has been difficult to find a fully articulated alternative management approach
for dealing with such issues as commercial component integration, software reuse,
risk management, and evolutionary/incremental/spiral software processes. This book
provides a new experience-tested framework and set of guidelines on how to proceed.

Walker Royce developed and tested this software management approach during
his inception-to-delivery participation in the large, successful CCPDS-R project per-
formed by TRW for the U.S. Air Force. He then refined and generalized it across a
wide spectrum of government, aerospace, and commercial software development
experiences at Rational.

Chapters 1 through 4 of the book motivate the approach by showing how it
gives you management control of the key software economics leverage points with
respect to traditional software management. These are (1) reducing the amount of
software you need to build, (2) reducing rework via improved processes and team-
work, and (3) reducing the labor-intensiveness of the remaining work via automation.

Chapters 5 through 10 present the specifics of a new organization of the soft-
ware life cycle, which also forms the management basis for Rational’s Unified process.
It combines the flexibility of the spiral model with the discipline of risk management
and a set of major life-cycle phases and milestones. These milestones are focused on
major management commitments to life-cycle courses of action.

As with our Anchor Point approach at USC, the life-cycle objectives milestone
involves a management commitment to engage in a software architecting effort based
on a business case analysis (or not to engage, in which case the project is mercifully

XXi

XXii FOREWORD

killed). The life-cycle architecture milestone involves a management commitment to
proceed into full-scale development based on establishing and demonstrating a sound
architecture and resolving all major risk items. The initial operational capability mile-
stone involves a management commitment to proceed to beta testing the product with
outside users, or its equivalent.

In these chapters, Royce provides a set of views showing how these milestones
differ from conventional document-oriented or code-oriented milestones. Instead, the
key product artifact sets (requirements, design, implementation, deployment) concur-
rently evolve and coalesce in a manner consistent with the project’s objectives and its
strategies for controlling risk.

In Chapters 10 through 14, Royce addresses how to. ensure that the software
project’s management artifacts are also concurrently evolving and coalescing. These
include the project’s plans and associated cost and schedule estimates, the project’s
organization and team-building activities, and the project’s metrics, instrumentation,
and control processes. Chapter 14 is particularly noteworthy. It not only emphasizes
that the management solutions are situation-dependent, it also provides guidelines for
tailoring them to the project’s scale, team culture, process maturity, architectural risk,
and domain experience.

In Chapters 15 through 17, Royce looks forward to where the best software
developers are going with their practices: toward product line management, round-
trip engineering, and smaller teams with managers as performers and quality assur-
ance as everyone’s job. Appendixes relate his software management approach to the
current state of the practice, to the COCOMO and COCOMO I family of cost mod-
els, and to the SEI Capability Maturity Model. Appendix D provides a convincing
case study of how the approach was successfully used on the large, technically chal-
lenging CCPDS-R project.

Royce has a refreshing candor about some of the fads, follies, and excesses in the
software field. This comes out particularly in several “pragmatic” sections that
address such topics as software cost estimation, inspections, artifacts, planning, and
metrics. Not everyone will agree with all of his assessments, particularly on inspec-
tions, but they are incisive and thought-provoking.

I feel extremely fortunate to have been able to work with both Walker Royce
and his equally insightful father, Winston Royce; to have learned from their experi-
ences; and to have interacted with them as they evolved their path-breaking ideas.

Barry Boehm
Director, USC Center for Software Engineering
April 1998

Preface

he software industry moves unrelentingly toward new methods for managing the
ever-increasing complexity of software projects. In the past, we have seen evolu-
tions, revolutions, and recurring themes of success and failure. While software technol-
ogies, processes, and methods have advanced rapidly, software engineering remains a
people-intensive process. Consequently, techniques for managing people, technology,
resources, and risks have profound leverage.
This book captures a software management perspective that emphasizes a bal-
anced view of these elements:

Theory and practice

Technology and people

¢ Customer value and provider profitability

Strategies and tactics

Throughout, you should observe a recurring management theme of paramount
importance: balance. It is especially important to achieve balance among the objec-
tives of the various stakeholders, who communicate with one another in a variety of
languages and notations. Herein is the motivation for the part opener art, an abstract
portrayal of the Rosetta stone. The three fundamental representation languages inher-
ent in software engineering are requirements (the language of the problem space),
design (the transformation languages of software engineers), and realizations (the lan-
guage of the solution space executable on computers). Just-as the Rosetta stone enabled
the translation of Egyptian hieroglyphics, software management techniques enable the
translation of a problem statement into a solution that satisfies all stakeholders.

xXxiii

XXiV PREFACE

There 1s no cookbook for software management. There are no recipes for obvi-
ous good practices. I have tried to approach the issues with as much science, realism,
and experience as possible, but management is largely a matter of judgment, (un)com-
mon sense, and situation-dependent decision making. That’s why managers are paid
big bucks.

Some chapters include sections with a pragmatic and often hard-hitting treat-
ment of a particular topic. To differentiate this real-world guidance from the general
process models, techniques, and disciplines, headings of these sections include the
word pragmatic. By pragmatic I mean having no illusions and facing reality squarely,
which is exactly the intent of these sections. They contain strong opinions and pro-
vocative positions, and will strike nerves in readers who are entrenched in some obso-
lete or overhyped practices, tools, or techniques.

I have attempted to differentiate among proven techniques, new approaches,
and obsolete techniques using appropriate substantiation. In most cases, I support my
positions with simple economic arguments and common sense, along with anecdotal
experience from field applications. Much of the material synthesizes lessons learned
(state-of-the-practice) managing successful software projects over the past 10 years.
On the other hand, some of the material represents substantially new (state-of-the-
art), hypothesized approaches that do not have clear substantiation in practice.

I have struggled with whether to position this book as management education or
management training. The distinction may seem nitpicky, but it is important. An
example I heard 15 years ago illustrates the difference. Suppose your 14-year-old
daughter came home from school one day and asked, “Mom and Dad, may I take the
sex education course offered at school?” Your reaction would likely be different if she
asked, “May I take the sex training course offered at school?” (This meant less to me
then than it does now that my three daughters are teenagers!)

Training has an aspect of applied knowledge that makes the knowledge more or
less immediately useful. Education, on the other hand, is focused more on teaching
the principles, experience base, and spirit of the subject, with the application of such
knowledge left to the student. I have tried to focus this book as a vehicle for software
management education. (I am not sure there is such a thing as management training
other than on-the-job experience.) I will not pretend that my advice is directly appli-
cable on every project. Although I have tried to substantiate as many of the position
statements as possible, some of them are left unsubstantiated as pure hypotheses. I
hope my conjecture and advice will stimulate further debate and progress.

My intended audience runs the gamut of practicing software professionals. Pri-
mary target readers are decision makers: those people who authorize investment and
expenditure of software-related budgets. This group includes organization managers,
project managers, software acquisition officials, and their staffs. For this audience, I
am trying to provide directly applicable guidance for use in today’s tactical decision

PREFACE XXV

making and tomorrow’s strategic investments. Another important audience is soft-
ware practitioners who negotiate and execute software project plans and deliver on
organizational and project objectives.

Style

Because | am writing for a wide audience, I do not delve into technical perspectives or
technical artifacts, many of which are better discussed in other books. Instead, I pro-
vide fairly deep discussions of the economics, management artifacts, work breakdown
strategies; organization strategies, and metrics necessary to plan and execute a success-
ful software project.

Ilustrations are included to make these complex topics more understandable.
The precision and accuracy of the figures and tables merit some comment. While most
of the numerical data accurately describe some concept, trend, expectation, or rela-
tionship, the presentation formats are purposely imprecise. In the context of software
management, the difference between precision and accuracy is not as trivial as it may
seem, for two reasons:

1. Software management is full of gray areas, situation dependencies, and
ambiguous trade-offs. It is difficult, if not impossible, to provide an accu-
rate depiction of many concepts a@xd to retain precision of the presentation
across a broad range of domains.

2. Understanding the difference between precision and accuracy is a funda-
mental skill of good software managers, who must accurately forecast esti-
mates, risks, and the effects of change. Unjustified precision—in
requirements or plans—has proven to be a substantial, yet subtle, recurring
obstacle to success.

In many of my numeric presentations, the absolute values are unimportant and quite
variable across different domains and project circumstances. The relative values con-
stitute the gist of most of the figures and tables.

I occasionally provide anecdotal evidence and actual field experience to put the
management approaches into a tangible context and provide relatively accurate and
precise benchmarks of performance under game conditions. Several appendixes clar-
ify how the techniques presented herein can be applied in real-world contexts. My
flagship case study is a thoroughly documented, successful, large-scale project that
provides a concrete example of how well many of these management approaches can
work. It also provides a framework for rationalizing some of the improved processes
and techniques.

XXVi PREFACE

Organization

The book is laid out in five parts, each with multiple chapters:

e Part I, Software Management Renaissance. Describes the current state of
software management practice and software economics, and introduces the
state transitions necessary for improved software return on investment.

e PartII, A Software Management Process Framework. Describes the process
primitives and a framework for modern software management, including
the life-cycle phases, artifacts, workflows, and checkpoints.

e Part I, Software Management Disciplines. Summarizes some of the criti-

cal techniques associated with planning, controlling, and automating a
modern software process.

e Part IV, Looking Forward. Hypothesizes the project performance expectations
for modern projects and next-generation software economics, and discusses
the culture shifts necessary for success.

e Part V, Case Studies and Backup Material. Five appendixes provide substan-
tial foundations for some of the recommendations, guidance, and opinions
presented elsewhere.

Acknowledgments

Although my perspective of iterative development has been influenced by many sources,
I have drawn on relatively few published works in writing this book. Providing a more
detailed survey of related publications might have helped some readers and satisfied
some authors, but most of the correlation with my views would be coincidental.

The foundation of my material comes basically from three sources, on which I
have drawn extensively:

1. TRW’s Ada Process Model Guidebook [Royce, Walker, 1989]. I wrote this
guidebook to capture the process description implemented successfully on
a large-scale TRW project so that it could be used throughout TRW.

2. Rational Software Corporation’s software management seminar [Royce,
Walker, 1997]. I wrote this two-day seminar on software best practices to
describe Rational’s software management approach. The peer reviewers for
this material included Don Andres (TRW), Barry Boehm (University of
Southern California), Larry Druffel (Software Engineering Institute), Lloyd
Mosemann (U.S. Air Force), and Winston Royce (TRW), in addition to
numerous field practitioners and executives within Rational. The seminar
was delivered dozens of times in the mid-1990s to a broad range of audi-
ences, including government groups, defense contractors, and commercial
organizations.

PREFACE XXVii

3. Rational’s Unified process. The acquisition of Objectory by Rational
resulted in a large internal investment to merge the techniques of the
Objectory process (focused on use-case-driven techniques) and the existing
Rational process (focused on management techniques and object-oriented
modeling). This investment is on-going, as Rational continues to broaden
the process description and prescription across more of the life-cycle activi-
ties, tools, and methods, resulting in the Unified process.

Several other sources had a significant effect on the management process pre-
sented in this book. Their influence is the result of long-term relationships that encap-
sulate years of interaction, exchange of ideas, and extensive firsthand communication.

» My association with Barry Boehm over the past 15 years has been a rich
source of software engineering knowledge.

¢ Don Andres’s extraordinary leadership and project management expertise
set him apart from the many project managers I have worked for and with,
and I have learned much from him. ‘

¢ Dave Bernstein, Robert Bond, Mike Devlin, Kevin Haar, Paul Levy, John
Lovitt, and Joe Marasco, senior managers at Rational, have evolved a nim-
ble company with a clear vision of software engineering as a business.

e Philippe Kruchten’s work on software architecture and process frame-
works, as well as his own field experience, has helped gel many of my per-
spectives and presentations.

e Grady Booch, Ivar Jacobson, and Jim Rumbaugh, Rational’s three senior
methodologists, have done the software engineering community a great
service in defining the Unified Modeling Language.

e Hundreds of dedicated software professionals in the Rational field organi-
zation have been responsible for delivering value to software projects and
transitioning software engineering theory into practice.

The most important influence on this work was my father, Winston Royce, who
set my context, validated my positions, critiqued my presentation, and strengthened
my resolve to take a provocative stand and stimulate progress.

Several people invested their own time reviewing early versions of my manu-
script and contributing to the concepts, presentation, and quality contained herein.
My special thanks go to Ali Ali, Don Andres, Peter Biche, Barry Boehm, Grady
Booch, Doug Ishigaki, Ivar Jacobson, Capers Jones, Hartmut Kocher, Philippe
Kruchten, Eric Larsen, Joe Marasco, Lloyd Mosemann, Roger Oberg, Rich Reitman,
Jim Rumbaugh, and John.Smith.

XXViii PREFACE

Finally, the overall presentation quality, consistency, and understandability of
this material are substantially the work of Karen Ailor. Her critique, sense of organi-

zation, attention to detail, and aggressive nitpicking contributed greatly to the overall
substance captured in this book.

RERE Bk
HEmigit K #
BEHH RAF

A E AN

BEHFHRRERENEBEEEH BRI EMARSFTHEH HET Y
RAPHEANRILRMEEERE). THIAERBERANNRBIFEMTHIT, WRILE
B, BBKEERNETIE. S8R ATWMER ERBRATH, 78 Kot 263, 43 %
LRBEREDAR,

B e B4R 7 BOE TR AL

B i%:(010) 84043279 13801081108

£ H:(010) 64033424

E — mail:dd@hep. com. cn

W AAETRBRUYMEE S S

#8 % :100009

Contents

List Of FIBUIES 11viiieriisiniiitneninesssnnnsinsisinisisinsssssssesesesssnsesessessseesseesnsesanns xiii

List Of Tablescociivireriririeerenitnere ettt vae e saees xvil

FOrEWOTd ...c.ccvivrieiriiineiennisrisiesseessne st e e ssseesessnssssnssessnsassessss sensssesanes xxi

Preface vt s s xxiii

PART I SOFTWARE MANAGEMENT RENAISSANCE 1
CHAPTER 1 Conventional Software Management...........cc.cooercentmccasscssemssnssssanesssnens 5
1.1 The Waterfall Model ...ccevceeruveerrenrrenrinensmrnrcenrceneceseieesneeenaes 6

1.1.1 In TheOory ..ooviiminmninieninninsstaissnsissismiessssssssssacsiases 6

1.1.2 INPractiCe...iminecriiecceerieccrrsneer s sssecsseesessensssssassssscns 11

1.2 Conventional Software Management Performance................... 17

CHAPTER 2 Evolution of Software ECONOMICS........cuenimmenmmmsesssmmassssssmssssssssnsanes 21
2.1 Software ECONOMICS ..c.virernsinseiissinsnnsinssesinnmessisssissesressonses 21

2.2 Pragmatic Software Cost EStimationccccverinsiiirnniicnnenne 26

CHAPTER 3 Improving Software Economics ... St s 31
3.1 Reducing Software Product Sizecoeeerveeriveniensireniennnnennennes 33

3.1.1 LangUABES.iccecisteeisiricasssnrerssiterisintacsssieesssssnnssssnneassssanes 34

3.1.2 Object-Oriented Methods and Visual Modeling........... 36

3.1.3 REUSE cirrieireeecerrereersirnnsessnnsstnetssssssaasssess s ssssssnsssrsnnssnnnes 38

3.1.4 Commercial COMPONENts.....cccrveesnisiressriressraseirassnine 39

3.2 Improving Software Processesccoccovivivinrnirnnneiinnseessnnans 40

3.3 Improving Team Effectivenesscooeivivemienecnneninienanenncencnes 43

vii

vili CONTENTS

3.4 Improving Automation through Software Environments.......... 46

3.5 Achieving Required Quality .ccocovvenriiinnmimninnicnnniincnisiiensnnn, 48

3.6 Peer Inspections: A Pragmatic VIEW.....ccccoceerrvrcrerirncievoeecannnnn. 51

CHAPTER 4 The Old Way and the New ... S s 55
4.1 The Principles of Conventional Software Engineering 55

4.2 The Principles of Modern Software Management..........ccc.eu... 63

4.3 Transitioning to an Iterative Process.........cccocoovvcciiniinininnnnnn. 66

PART II A SOFTWARE MANAGEMENT PROCESS FRAMEWORK 69
CHAPTER § Life-Cycle Phasesc.commusimmmmrmssssssmssesssicssssmsssssssssss s sssssssssassssenanns 73
5.1 Engineering and Production Stages......ccoceevurieericinienisincniincnns 74

5.2 Inception Phase ..o s 76

5.3 Elaboration Phaseccecueemrmerveniroriivsisiniierseeeeseeisseneeinscans 77

5.4 Construction Phaseoccoveeeienirniernieeceene it 79

5.5 Transition Phase....cc..cccconirniininiiiniinninieesoneneienssn, 80

CHAPTER 6 Artifacts Of the Process ... 83
6.1 The Artifact SEtS..iceerrieeesierernrmiririsiriierineiess e st sesais st esiens 84

6.1.1 The Management Setcovuruiinimiimnrenenininnneesnnienees 85

6.1.2 The Engineering SetS......cccoounnimiimimmmsiscvnensnineiesmenensaees 86

6.1.3 Artifact Evolution over the Life Cycle..........ccccvveerieneen. 92

6.1.4 Test ATTIfACES. evvrerereienreeennrreeeesintareessasrasrnsnesneses 93

6.2 Management ATEEACIS couvviiineiimsminsnie e 96

6.3 Engineering Artifacts.....cococonerenrnenccnineeieiane 103

6.4 Pragmatic ArtifactS.......coeovrmmeuessnineentnnms s 105

CHAPTER 7 Model-Based Software Architectures...........eenes s ————— 109
7.1 Architecture: A Management Perspective vovooeiveniersnscriiiniirnnans 110

7.2 Architecture: A Technical Perspectiveccovvevieieimnecccnnniinnne 111

cHAPTER 8 Workflows of the Process........ccecnnisinnnns SRR — SRR 117
8.1 Software Process Workflows......o.cooviiniiimmcrnnincinnennicicinnininnne, 118

8.2 Iteration WOrkflowscccccveecirinniieniniiinisnuimenneee e, 121

CHAPTER 9 Checkpoints of the Process . 125
9.1 Major MIleStONesoverernerenvceiniiaiinient st 126

9.2 Minor MilEStONEeSuveveieieerercirireiireseiectrnss e sstsssiaerees 132

9.3 Periodic Status ASSESSITIENTS veriieererrmrsssassssssersessecssssmiiiiarnas 133

