&, 4 4
'S = - 5 PEARSON
% I p ’ . \(Ilm n

((\

S B wam)

B2 8B

Wik 54 briat
e 220y

[£] AnanyLevitin ¥

BIEXF MR
* %

English reprint edition copyright © 2003 by PEARSON EDUCATION ASIA
LIMITED and TSINGHUA UNIVERSITY PRESS.

Original English language title from Proprietor’s edition of the Work.

Original English tanguage title: Introduction to The Design & Analysis of
Algorithms, 1st Edition, by Anany Levitin, Copyright © 2003

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Pearson Education, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of
China (excluding the Special Administrative Region of Hong Kong, Macao SAR and
Taiwan).

#13Z E1/% i Pearson Education #2845 75 H k2 HRRAL AR R AT

For sale and distribution in the People’s Republic of China
exclusively (except Taiwan, Hong Kong SAR and Macao SAR).
WRFhEAREMEBN (FEFEREEE. RITHNTHEMS
E&AEBX) MERIT.

R RBUREENER LS BF: 01-2003-2170

AR EMGE Pearson Education (Z% H & h AR EH) B AIRE,
TERREETBHE.
BHEMEHE (CiP) #iE
MR 55 H 3R = Introduction to The Design & Analysis of Algorithms /
[EEIRBITE —2aug. dbst: EHRRFEHRE, 2003)
(CHEZ M)
ISBN 7-302-06796-1
1.8 .5 NMOEER R LOHEEMT—HEX V. TP301.6
WA E B CIP BB HT (2003) 2054551 5

O & BERFRER . EEEERFERKE
http; //www. tup. com. cn B #%. 100084
£ B #Hl. 010-62770175 ERJR%E: 010-62776969
XRRE: BRI

HWigit . 2B HRIA A
R . R mARERT
& 17 F. HEHELBEILRRGTH

F &, 148%210 Ei: 16.5

M K. 20034FE 8 A LME 20034 8 A% 1 IKEIR
1 2. ISBN 7-302-06796-1/TP ¢ 5057

£ # . 1~3000

E #:39.00 %

Preface

The most valuable acquisitions in a scientific or technical education are the
general-purpose mental tools which remain serviceable for a life-time.
—George Forsythe, “What to do tiil the computer scientist comes” {1968)

Igorithms play the central role in both the science and the practice of

computing. Recognition of this fact has led to the appearance of a con-
siderable number of textbooks on the subject. By and large, they follow one of
two alternatives in presenting algorithms. One classifies algorithms according
to a problem type. Such a book would have separate chapters on algorithms for
sorting, searching, graphs, and so on. The advantage of this approach is that it
allows an immediate comparison of, say, the efficiency of different algorithms
for the same problem. The drawback of this approach is that it emphasizes
problem types at the expense of algorithm design techniques.

The second alternative organizes the presentation around algorithm de-
sign techniques. In this organization, algorithms from different areas of com-
puting are grouped together if they have the same design approach. I share
the belief of many (e.g., [BaY95]) that this organization is more appropri-
ate for the basic course on the design and analysis of algorithms. There are
three principal reasons for emphasis on algorithm design techniques. First,
these techniques provide a student with tools for designing algorithms for new
problems. This makes learning algorithm design technique a very valuable
endeavor from the practical standpoint. Second, they seek to classify multi-
tudes of known algorithms according to an underlying design idea. Learn-
ing to see such commonality among algorithms from different application
areas should be a major goal of computer science education. After all, ev-
ery science considers classification of its principal subject as a major if not

Xix

Preface

the central point of its discipline. Third, in my opinion. algorithm design tech-
niques have considerable utility as general problem-solving strategies, applicable
to problems beyond computing.

Several textbooks exist that are organized around algorithm design tech-
niques (see [BB96), [HSRY8], [NN98]). The problem with these books is that they
uncritically follow the same classification of design techniques. This-classification
has several serious shortcomings from both theoretical and educational points of
view. The most significant of the shortcomings is failure to classify many impor-
tant algorithms. This limitation has forced the authors of existing textbooks to
depart from the design technique organization and to include chapters dealing
with specific problem types. Unfortunately, such a switch leads to a loss of course
coherence and almost unavoidably creates confusion in students’ minds.

New Taxonomy of Algorithm Design Technigques

My frustration with the shortcomings of the existing classification of algorithm
design techniques has motivated me to develop a new taxonomy of techniques
[Lev99}, which is the basis of this book. Here are the principal advantages of the
new taxonoemy:

® The new taxonomy is more comprehensive than the traditional one. It in-
cludes several strategies—brute force, decrease-and-conquer, transform-and-
conquer, and time and space tradeoffs—that are rarcly if ever recognized as
important design paradigms.)

® The new taxonomy covers naturally many classic algorithms (Euclid’s algo-
rithm, heapsort, search trees, hashing, topological sorting, Gaussian elimi-
nation, Horner’s rule, to name a few) that the traditional taxonomy cannot
classify. As a result, it makes it possible to present the standard body of classic
algorithms in a unified and coherent fashion.

¥ It naturally accommodates the existence of important varieties of several
design techniques. (For example, it recognizes three variations of decrease-
and-conquer and three variations of transform-and-conquer.)

W It is better aligned with analytical methods for the efficiency analysis (see
Appendix B).

Design Techniques as General Problem-Solving Strategies

Most applications of the design techniques in the book are to classic problems
of computer science. The only innovation here is the inclusion of some material
on numerical algorithms, which are covered within the same general framework.
(Aninclusion of numerical algorithms is encouraged by Computing Curricula 2001
[CCO01]—a new mode! curriculum for computer science programs.) But the design
techniques can be considered general problem-solving tools, whose applications
are not limited to traditional computing and mathematical problems. Two factors

Preface xxi

make this point particularly important. First, more and more computing applica-
tions go beyond the traditional domain, and there are reasons to believe that this
trend will strengthen in the future. Second, developing students’ problem-solving
skills has come to be recognized as a major goal of college education. Among all
the courses in a computer science curriculum, a course on the design and analysis
of algorithms is uniquely suitable for this task because it can offer a student spe-
cific strategies for solving problems. I am not proposing that a course on the design
and analysis of algorithms should become a course on general problem solving.
But I do believe that the unique opportunity provided by studying the design and
analysis of algorithms should not be missed. Toward this goal, the book includes
applications to puzzles and puzzle-like games. Although using puzzles in teaching
algorithms is certainly not a new idea, the book tries to do so systematically by
going beyond a few standard examples.

Textbook Pedagogy

My goal was to write a text that would not trivialize the subject but still would be
readable by most students on their own. Here are some of the things done in the

book toward this objective.

Sharing the opinion of George Forsythe (see the epigraph), I have sought
to stress major ideas underlying the design and analysis of algorithms. In
choosing specific algorithms to illustrate these ideas, 1 limited the number
of covered algorithms to those that most clearly demonstrate an underlying
design technique or analysis method. Fortunately, most classic algorithms
satisfy this criterion.

In Chapter 2, which is devoted to the efficiency analysis, the methods used for
analyzing nonrecursive algorithms are separated from those typically used for
analyzing recursive algorithms. The chapter also includes sections devoted to
empirical analysis and algorithm visualization.

& The narrative is systematically interrupted by questions to the reader. Some
of them are asked rhetorically, in anticipation of a concern or doubt, and are
answered immediately. The goal of the others is to prevent the reader from
drifting through the text without a satisfactory level of comprehension.

Each chapter ends with a summary recapping the most important concepts
and results discussed in the chapter.

The book contains about 600 exercises. Some of them are drills; others make
important points about the material covered in the body of the text or intro-
duce algorithms not covered there at all. A few exercises take advantage of
Internet resources. Several exercises are designed to prepare the reader for
material covered later in the book. More difficult problems—there are not
many of them—are marked with a special symbol in the Instructor’s Man-
ual. (Because designating problems as difficult may discourage some students
from trying to tackle them, problems are not marked in the book itself.)

xxii

Preface

Puzzies, games, and puzzle-like questions are marked in the exercises in the
textbook with a special icon.

B The book provides hints to all the exercises. Detailed solutions, except for
programming projects, are provided in the Instructor’s Manual available to
qualified adopters from the publisher. (Contact your Addison-Wesley repre-
sentative, or email aw.cse@aw.com.) The supplements available to all readers
of this book are at www.aw.com/cssupport.

Prerequisites

The book assumes that a reader has gone through an introductory programming
course and a standard course on discrete structures. With such a background,
he or she should be able to handle the book’s material without undue difficulty.
Still, fundamental data structures, necessary summation formulas, and recurrence
relations are reviewed in Section 1.4, Appendix A, and Appendix B, respectively.
Calculus is used in only three sections (Sections 2.2, 10.4, and 11.4) and to a very
limited degree; if students lack calculus as an assured part of their background,
the portions of these three sections that involve calculus can be omitted without
hindering their understanding of the rest of the material.

Use in the Curriculum

The book can serve as a textbook for the basic course on design and analysis of
algorithms that is organized around algorithm design techniques. It might contain
loo much material for a typical one-semester course. By and large, portions of
Chapters 3 through 11 can be skipped without danger of making later parts of the
book incomprehensible to the reader. Any portion of the book can be assigned for
self-study. In particular, Sections 2.6 and 2.7 on empirical analysis and algorithm
visualization, respectively, can be assigned in conjunction with projects.

Here is a possible plan for a one-semester course; it assumes a 40-class meeting
format.

Lecture Tepic Sections
1,2 Introduction 1.1-1.3
3,4 Analysis framework; 0, ©, Q notations 2.1,2.2
5 Mathematical analysis of nonrecursive algorithms 23
6,7 Mathematical analysis of recursive algorithms 2.4,2.5(+ App. B)
8 Brute-force algorithms 3.1,32(+33)
9 Exhaustive search 34
10-12 Divide-and-conquer: mergesort, quicksort, binary ~ 4.1-4.3
search

13 Other divide-and-conquer examples 440rd4.50rd6

Preface xxili

14-16 Decrease-by-one: insertion sort, DFS & BFS, 5.1-53
topological sorting

17 Decrease-by-a-constant-factor algorithms 55

18 Variable-size-decrease algorithms 5.6

19-21 Instance simplification, presorting, Gaussian 6.1-6.3
elimination, balanced search trees

22 Representation change: heaps and heapsort 6.4

23 Representation change: Horner’s rule and binary 6.5
exponentiation

24 Problem reduction 6.6

25-27 Space-time tradeoffs: string matching, hashing, 7.2-74
B-trees

28-30 Dynamic programming algorithms 3 from 8.1-8.4

31-33 Greedy algorithms: Prim’s, Kruskal’s, Dijkstra’s, 9.1-9.4
Huffman’s

34 Lower-bound arguments 10.1

35 Decision trees 10.2

36 F, NP, and NP-complete problems 10.3

37 Numerical algorithms 10.4 (+ 11.4)

38 Backtracking 11.1

39 Branch-and-bound 11.2

40 Approximation algorithms for NP-hard problems 11.3

Acknowledgments

1 would like to start by acknowledging the authors of other algorithm textbooks
from whose insights and presentation ideas I have benefited both directly and indi-
rectly. The advice and criticism of the book’s reviewers have made the book better
than it would have been otherwise. I am thankful to Simon Berkovich (George
Washington University), Richard Borie (University of Alabama), Douglas M.
Campbell (Brigham Young University), Bin Cong (California State University,
Fullerton), Steve Homer (Boston University), Roland Hiibscher (Auburn Uni-
versity), Sukhamay Kundu (Louisiana State University), Sheau-Dong Lang (Uni-
versity of Central Florida}, John C. Lusth (University of Arkansas), John F. Meyer
(University of Michigan), Steven R. Seidel (Michigan Technological University),
Ali Shokoufandeh (Drexel University), and George H. Williams (Union College).

I am grateful to my colleague Mary-Angela Papalaskari, who used the man-
uscript in teaching a course on algorithms at Villanova and suggested several
improvements to the text and the exercises. She also enthusiasticaily supported
the idea of systematic utilization of puzzles in the book. Another colleague, John
Matulis, used the manuscript in his sections, too, and provided me with useful
feedback. A former student, Andiswa Heinegg, helped to prepare the manuscript
and, through her critique. made it clearer in both content and style.

xxiv

Preface

Students at Villanova have suffered the inconvenience of using the manuscript
as their textbook over the past few semesters. | acknowledge their patience, useful
feedback, and corrections to the errors and typos they found. The remaining errors
are not, of course, their fault; | introduced them after they had taken the course.

1 thank all the people at Addison-Wesley and its associates who worked on my
book. I am especially grateful to my editor, Maite Suarez-Rivas, and her former
assistant Lisa Hogue for sharing and supporting my enthusiasm for this project.

Finally, I am indebted to two members of my family. Living with a spouse who
is writing a book is probably more trying than doing the actual writing. My wife,
Maria, lived through two years of this, helping me any way she could. And help
she did: all 250 or so figures in the book are her creations. My daughter Miriam has
been my English prose guru over many years. Not only did she read large portions
of the book; she was instrumental in finding the chapter epigraphs.

Anany Levitin
anany.levitin@villanova.edu
August 2002

1.2

1.3

Contents

Preface

Introduction

Notion of Algorithm
Exercises 1.1

Fundamentals of Algorithmic Problem Solving
Understanding the Problem

Ascertaining the Capabilities of a Computational Device
Choosing between Exact and Approximate Problem Solving
Deciding on Appropriate Data Structures

Algorithm Design Techniques

Methods of Specifying an Algorithm

Proving an Algorithm's Correctness

Analyzing an Algorithm

Coding an Aigorithm

Exercises 1.2

important Problem Types
Sorting

Searching

Stiing Processing

Graph Problems

Combinatorial Problems
Geometric Problems
Numerical Problems

Exercises 1.3

xix

-

w o w

n
12
12
13
13
4
15
17

19
19
20
21
21
22
22
23
23

Contents

1.4

2.1

2.2

2.3

24

25

Fundamental Data Structures
Linear Data Structures

Graphs

Trees

Sets and Dictionaries

Exercises 1.4

Summary

Fundamentals of the Analysis of Algorithm
Efficiency

Analysis Framework

Measuring an Input’s Size

Units for Measuring Running Time

Orders of Growth

Worst-Case, Best-Case, and Average-Case Efficiencies
Recapitulation of the Analysis Framework

Exercises 2.1

Asymptotic Notations and Basic Efficiency Classes
Informal Introduction

O-notation

Q-notation

@-notation

Useful Property involving the Asymptotic Notations

Using Limits for Comparing Orders of Growth

Basic Efficiency Classes

Exercises 2.2

Mathematical Analysis of Nonrecursive Algorithms
Exercises 2.3

Mathematical Analysis of Recursive Algorithms
Exercises 2.4

Example: Fibonacci Numbers
Explicit Formula for the nth Fibonacci Number
Algorithms for Computing Fibonacci Numbers

Exercises 2.5

26
26
28
32
35
37

39

41

42
43

45
47
50
50

52
52
53

55
56
57
58

59

61
67

69
76

78
79
81
83

2.6

27

3

3.1

3.2

3.3

34

4.2

43

Contents

Empirical Analysis of Algorithms
Exercises 2.6

Algorithm Visualization
Summary

Brute Force

Selection Sort and Bubble Sort
Selection Sort

Bubble Sort

Exercises 3.1

Sequential Search and Brute-Force String Matching

Sequential Search
Brute-Force String Matching

Exercises 3.2

Closest-Pair and Convex-Hull Problems by Brute Force
Closest-Pair Problem
Convex-Hull Problem

Exercises 3.3

Exhaustive Search
Traveling Salesman Problem
Knapsack Problem
Assignment Problem
Exercises 3.4

Summary

Divide-and-Conquer

Mergesort
Exercises 4.1

Quicksort
Exercises 4.2

Binary Search
Exercises 4.3

90

91
95

97

98
99
100
102

103
103
104

105

107
107
108
m

113
113
115
115

118
119

121

124
126

127
132

133
136

xii

Contents

4.4

45

4.6

5.2

5.3

54

5.5

5.6

Binary Tree Traversals and Related Properties
Exercises 4.4

Multiplication of Large Integers and Strassen’s
Matrix Multiplication

Multiplication of Large Integers

Strassen’s Matrix Multiplication

Exercises 4.5

Closest-Pair and Convex-Hull Problems by
Divide-and-Conqguer

Closest-Pair Problem

Convex-Hull Problem

Exercises 4.6
Summary

Decrease-and-Conquer

Insertion Sort
Exercises 5.1

Depth-First Search and Breadth-First Search
Depth-First Search
Breadth-First Search

Exercises 5.2

Topological Sorting
Exercises 5.3

Algorithms for Generating Combinatorial Objects
Generating Permutations
Generating Subsets

Exercises 5.4

Decrease-by-a-Constant-Factor Algorithms
Fake-Coin Problem

Multiplication a la Russe

Josephus Problem

Exercises 5.5

Variable-Size-Decrease Algorithms
Computing a Median and the Selection Problem

138
140

142
142
144

146

147
147
148
151
152

155

158
161

162
163
165
168

170
173

175
175
177

179

180
180
181
182
184

185
185

6.2

6.3

6.4

6.5

6.6

Contents

Interpolation Search

Searching and Insertion in a Binary Search Tree
Exercises 5.6

Summary

Transform-and-Conquer

Presorting
Exercises 6.1

Gaussian Elimination

LU Decomposition and Other Applications
Computing a Matrix Inverse

Computing a Determinant

Exercises 6.2

Balanced Search Trees
AVL Trees

2-3 Trees

Exercises 6.3

Heaps and Heapsort
Notion of the Heap
Heapsort

Exercises 6.4

Horner’s Rule and Binary Exponentiation
Horner's Rule
Binary Exponentiation

Exercises 6.5

Probiem Reduction

Computing the Least Common Multiple
Counting Paths in a3 Graph

Reduction of Optimization Problems
Linear Programming

Reduction to Graph Problems
Exercises 6.6

Summary

xiii

187
188
189
190

193

194
197

199
204
205
206

207

209
210
215

217

218
218
223
224

225
226
228

231

232
233
234
235
236
239
240

242

xiv Contents

7

7.1

7.2

7.3

74

8.2

8.3

8.4

Space and Time Tradeoffs

Sorting by Counting
Exercises 7.1

Input Enhancement in String Matching
Horspool's Aigorithm
Boyer-Moore Algorithm

Exercises 7.2

Hashing
Open Hashing {Separate Chaining)
Closed Hashing (Open Addressing)

Exercises 7.3

B-Trees
Exercises 7.4
Summary

Dynamic Programming

Computing a Binomial Coefficient
Exercises 8.1

Warshall’'s and Floyd’s Algorithms
Warshall's Algorithm

Floyd's Algorithm for the All-Pairs Shortest-Paths Problem

Exercises 8.2

Optimal Binary Search Trees
Exercises 8.3

The Knapsack Problem and Memory Functions

Memory Functions
Exercises 8.4
Summary

245

247
250

251
252
255

259

261

262 .

264
266

267
21
272

275

277
278

280
280
284

288

289
294

295
297

299
300

9

9.1

9.2

9.3

9.4

10

10.1

10.2

10.3

10.4

Contents

Greedy Techniquse

Prim’s Algorithm
Exercises 9.1

Kruskal's Algorithm
Disjoint Subsets and Union-Find Algorithms

Exercises 9.2

Dijkstra’s Algorithm
Exercises 9.3

Huffman Trees
Exercises 9.4
Summary

Limitations of Algorithm Power

Lower-Bound Arguments
Trivial Lower Bounds
information-Theoretic Argurments
Adversary Arguments

Problem Reduction

Exercises 10.1

Decision Trees
Decision Trees for Sorting Algorithms
Decision Trees for Searching a Sorted Array

Exercises 10.2

P, NP, and NPcomplete Problems
P and NP Problems
NP-complete Problems

Exercises 10.3

Challenges of Numerical Algorithms
Exercises 10.4
Summary

303

305
309

311
314

318

319
322

324
328
329

k&)]

332
333
334
334
336

337

339
340
342

345
346
361
353

356
363
364

Contents

11 Coping with the Limitations of Algorithm Power

1.1

1.2

1.3

1.4

Backtracking

n-Queens Problem
Hamiltonian Circuit Problem
Subset-Sum Problem
General Remarks
Exercises 11.1

Branch-and-Bound
Assignment Problem
Knapsack Problem

Traveling Salesman Problem

Exercises 11.2

Approximation Algorithms for NP-hard Problems
Approximation Algorithms for the Traveling Salesman Problem
Approximation Algorithms for the Knapsack Problem

Exercises 11.3

Algorithms for Solving Nonlinear Equations
Bisection Method

Method of False Position

Newton's Method

Exercises 11.4
Summary

Epilogue

APPENDIX A

Useful Formulas for the Analysis of Algorithms
Properties of Logarithms

Combinatorics

{mportant Summation Formulas

Sum Manipulation Rules

Approximation of a Sum by a Definite Integral

Floor and Ceiling Formulas

Miscellaneous

367

368
368
371
372
373
375

376
377
380
382
384

386
388
392
396

397
399
402
404
406
407

413
413
413
414
414
414
415
415

