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Preface

The most valuable acquisitions in a scientific or technical education are the
general-purpose mental tools which remain serviceable for a life-time.
—George Forsythe, “What to do tiil the computer scientist comes” {1968)

Igorithms play the central role in both the science and the practice of

computing. Recognition of this fact has led to the appearance of a con-
siderable number of textbooks on the subject. By and large, they follow one of
two alternatives in presenting algorithms. One classifies algorithms according
to a problem type. Such a book would have separate chapters on algorithms for
sorting, searching, graphs, and so on. The advantage of this approach is that it
allows an immediate comparison of, say, the efficiency of different algorithms
for the same problem. The drawback of this approach is that it emphasizes
problem types at the expense of algorithm design techniques.

The second alternative organizes the presentation around algorithm de-
sign techniques. In this organization, algorithms from different areas of com-
puting are grouped together if they have the same design approach. I share
the belief of many (e.g., [BaY95]) that this organization is more appropri-
ate for the basic course on the design and analysis of algorithms. There are
three principal reasons for emphasis on algorithm design techniques. First,
these techniques provide a student with tools for designing algorithms for new
problems. This makes learning algorithm design technique a very valuable
endeavor from the practical standpoint. Second, they seek to classify multi-
tudes of known algorithms according to an underlying design idea. Learn-
ing to see such commonality among algorithms from different application
areas should be a major goal of computer science education. After all, ev-
ery science considers classification of its principal subject as a major if not

Xix



Preface

the central point of its discipline. Third, in my opinion. algorithm design tech-
niques have considerable utility as general problem-solving strategies, applicable
to problems beyond computing.

Several textbooks exist that are organized around algorithm design tech-
niques (see [BB96), [HSRY8], [NN98]). The problem with these books is that they
uncritically follow the same classification of design techniques. This-classification
has several serious shortcomings from both theoretical and educational points of
view. The most significant of the shortcomings is failure to classify many impor-
tant algorithms. This limitation has forced the authors of existing textbooks to
depart from the design technique organization and to include chapters dealing
with specific problem types. Unfortunately, such a switch leads to a loss of course
coherence and almost unavoidably creates confusion in students’ minds.

New Taxonomy of Algorithm Design Technigques

My frustration with the shortcomings of the existing classification of algorithm
design techniques has motivated me to develop a new taxonomy of techniques
[Lev99}, which is the basis of this book. Here are the principal advantages of the
new taxonoemy:

® The new taxonomy is more comprehensive than the traditional one. It in-
cludes several strategies—brute force, decrease-and-conquer, transform-and-
conquer, and time and space tradeoffs—that are rarcly if ever recognized as
important design paradigms. )

® The new taxonomy covers naturally many classic algorithms (Euclid’s algo-
rithm, heapsort, search trees, hashing, topological sorting, Gaussian elimi-
nation, Horner’s rule, to name a few) that the traditional taxonomy cannot
classify. As a result, it makes it possible to present the standard body of classic
algorithms in a unified and coherent fashion.

¥ It naturally accommodates the existence of important varieties of several
design techniques. (For example, it recognizes three variations of decrease-
and-conquer and three variations of transform-and-conquer.)

W It is better aligned with analytical methods for the efficiency analysis (see
Appendix B).

Design Techniques as General Problem-Solving Strategies

Most applications of the design techniques in the book are to classic problems
of computer science. The only innovation here is the inclusion of some material
on numerical algorithms, which are covered within the same general framework.
(Aninclusion of numerical algorithms is encouraged by Computing Curricula 2001
[CCO01]—a new mode! curriculum for computer science programs.) But the design
techniques can be considered general problem-solving tools, whose applications
are not limited to traditional computing and mathematical problems. Two factors
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make this point particularly important. First, more and more computing applica-
tions go beyond the traditional domain, and there are reasons to believe that this
trend will strengthen in the future. Second, developing students’ problem-solving
skills has come to be recognized as a major goal of college education. Among all
the courses in a computer science curriculum, a course on the design and analysis
of algorithms is uniquely suitable for this task because it can offer a student spe-
cific strategies for solving problems. I am not proposing that a course on the design
and analysis of algorithms should become a course on general problem solving.
But I do believe that the unique opportunity provided by studying the design and
analysis of algorithms should not be missed. Toward this goal, the book includes
applications to puzzles and puzzle-like games. Although using puzzles in teaching
algorithms is certainly not a new idea, the book tries to do so systematically by
going beyond a few standard examples.

Textbook Pedagogy

My goal was to write a text that would not trivialize the subject but still would be
readable by most students on their own. Here are some of the things done in the

book toward this objective.

# Sharing the opinion of George Forsythe (see the epigraph), I have sought
to stress major ideas underlying the design and analysis of algorithms. In
choosing specific algorithms to illustrate these ideas, 1 limited the number
of covered algorithms to those that most clearly demonstrate an underlying
design technique or analysis method. Fortunately, most classic algorithms
satisfy this criterion.

# In Chapter 2, which is devoted to the efficiency analysis, the methods used for
analyzing nonrecursive algorithms are separated from those typically used for
analyzing recursive algorithms. The chapter also includes sections devoted to
empirical analysis and algorithm visualization.

& The narrative is systematically interrupted by questions to the reader. Some
of them are asked rhetorically, in anticipation of a concern or doubt, and are
answered immediately. The goal of the others is to prevent the reader from
drifting through the text without a satisfactory level of comprehension.

# Each chapter ends with a summary recapping the most important concepts
and results discussed in the chapter.

# The book contains about 600 exercises. Some of them are drills; others make
important points about the material covered in the body of the text or intro-
duce algorithms not covered there at all. A few exercises take advantage of
Internet resources. Several exercises are designed to prepare the reader for
material covered later in the book. More difficult problems—there are not
many of them—are marked with a special symbol in the Instructor’s Man-
ual. (Because designating problems as difficult may discourage some students
from trying to tackle them, problems are not marked in the book itself.)
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Puzzies, games, and puzzle-like questions are marked in the exercises in the
textbook with a special icon.

B The book provides hints to all the exercises. Detailed solutions, except for
programming projects, are provided in the Instructor’s Manual available to
qualified adopters from the publisher. (Contact your Addison-Wesley repre-
sentative, or email aw.cse@aw.com.) The supplements available to all readers
of this book are at www.aw.com/cssupport.

Prerequisites

The book assumes that a reader has gone through an introductory programming
course and a standard course on discrete structures. With such a background,
he or she should be able to handle the book’s material without undue difficulty.
Still, fundamental data structures, necessary summation formulas, and recurrence
relations are reviewed in Section 1.4, Appendix A, and Appendix B, respectively.
Calculus is used in only three sections (Sections 2.2, 10.4, and 11.4) and to a very
limited degree; if students lack calculus as an assured part of their background,
the portions of these three sections that involve calculus can be omitted without
hindering their understanding of the rest of the material.

Use in the Curriculum

The book can serve as a textbook for the basic course on design and analysis of
algorithms that is organized around algorithm design techniques. It might contain
loo much material for a typical one-semester course. By and large, portions of
Chapters 3 through 11 can be skipped without danger of making later parts of the
book incomprehensible to the reader. Any portion of the book can be assigned for
self-study. In particular, Sections 2.6 and 2.7 on empirical analysis and algorithm
visualization, respectively, can be assigned in conjunction with projects.

Here is a possible plan for a one-semester course; it assumes a 40-class meeting
format.

Lecture  Tepic Sections
1,2 Introduction 1.1-1.3
3,4 Analysis framework; 0, ©, Q notations 2.1,2.2
5 Mathematical analysis of nonrecursive algorithms 23
6,7 Mathematical analysis of recursive algorithms 2.4,2.5(+ App. B)
8 Brute-force algorithms 3.1,32(+33)
9 Exhaustive search 34
10-12 Divide-and-conquer: mergesort, quicksort, binary ~ 4.1-4.3
search

13 Other divide-and-conquer examples 440rd4.50rd6
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14-16 Decrease-by-one: insertion sort, DFS & BFS, 5.1-53
topological sorting

17 Decrease-by-a-constant-factor algorithms 55

18 Variable-size-decrease algorithms 5.6

19-21 Instance simplification, presorting, Gaussian 6.1-6.3
elimination, balanced search trees

22 Representation change: heaps and heapsort 6.4

23 Representation change: Horner’s rule and binary 6.5
exponentiation

24 Problem reduction 6.6

25-27 Space-time tradeoffs: string matching, hashing, 7.2-74
B-trees

28-30 Dynamic programming algorithms 3 from 8.1-8.4

31-33 Greedy algorithms: Prim’s, Kruskal’s, Dijkstra’s, 9.1-9.4
Huffman’s

34 Lower-bound arguments 10.1

35 Decision trees 10.2

36 F, NP, and NP-complete problems 10.3

37 Numerical algorithms 10.4 (+ 11.4)

38 Backtracking 11.1

39 Branch-and-bound 11.2

40 Approximation algorithms for NP-hard problems 11.3
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