// Lk

Wesley

C++ Network Programming

Volume 1
Mastering Complexity with ACE and Patterns

Douglas C. Schmidt, Stephen D. Huston

CH+LE e & 1
is I ACE R LR 52 % Pk

Mastering Coexity with ACE and Patterns

Douglas C. Schmidt, Stephen D. Huston ¥

CH+MIZagnfe %1

e
wii i
31034
FBEXRF MR

=573

English reprint edition copyright © 2003 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: C++ Network Programming, Volume 1: Mastering Complexity with ACE and
Patterns by Douglas C. Schmidt and Stephen D. Huston, Copyright © 2002
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education Inc., publishing as Addison-Wesley.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

AP 81 Pearson Education (354 E HMARER) 2L R4 IR A R R 1T

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).

URFHEARKINEER (FEFEPESE. BN ITH X4
E&EX) HELT.

AFEHRAREERNAFEILS BT 01-2003-2085

FHHMENEA Pearson Education (B4 1 8 1 KR & H) BB 0IRE, RHREEREWNE.

B A B (CIP) i

CHM%%ifs & 1. B/ ACE MBI HE #ME = C+ Network Programming, Volume 1: Mastering
Complexity with ACE and Patterns / JiX#%F (Schmidt, D. C.), K#if (Huston, S.D.) . —BEIA.
—Ibn: HRREHMME, 2003.12

ISBN 7-302-07644-8

[.C . Ofi- @k T CEF-—BEFRI—BS¥R—-#M—% L V. TP3I12
o ERA B AE CIP T (2003) % 103806 5

H R & EERFHER o b dbRERKFERAE
http://www.tup.com.cn i | %i: 100034

2. (010) 62770175 ERABES: (010) 6277 6969
R EFEOR

=TT A R A E

FHEPIE BB RITHR

185X230 EP5k: 20.75

2003 F 12 A 1R 2003 4F 12 A% 1 REVRY

ISBN 7-302-07644-8/TP * 5606

1~3000

29.00 T

—

&
O 55 P ke Dk b

Al S H&HRERD

EBWHFELFARE. WEOUARBT. BN, RAUSNRFRRAE, §55% KR IR EER
W, BRRHEEE: (010) 62770175-3103 3% (010) 62795704,

H i i W

HA 21 g, HAZFENLSF. BBEURFSENNRESFEENHT. REHRPLE
BRI AL HSF. #BERERERMOAL, EREERFPRENE. BEHH, Eh
BHFERERAA WL, DAZIREEN. HNRESSHENEMEHEE, BT hk
B MERER, BEHMEAKRNRIERE R E SRR B .

BHERFHIEIA 1996 FFF G, SEIELHMATEE, BEHRT “R#ETE
HEAR (B F—RFI51#EH, B TEAREREMRF. BA 20 HE, &
NEFARERSHEBMBRREWNE, ECENER L, #—PY KEBNE, K&
B HFART, — B IEE X T KOGRER T RE RS R R RET BT HIES
ZRPMBE LB, BREAE “REHEHHE ESNELEM RS RO, URIEE.
A HRHEE R A RSB BRI R LR RGBT EREENER. ERHK
FBRATHERE BT ENBE WRTEEH, LIRIBAHE K ET RN B EESELEM RI(R
END” HMAEY, EEAERRMENEE.

b YN di) 7
2002 %F 10 A

Foreword

As I write this foreword I'm traveling through Europe, relying on the excel-
lent European public transportation infrastructure. Being an American,
I'm fascinated and amazed by this infrastructure. Wherever I land at an
airport I have easy access to trains and buses that are fast, clean, reliable,
on time, and perhaps most importantly, going directly to my destination.
Departure and arrival announcements are available in multiple languages.
Signs and directions are easy to follow, even for non-native speakers like
me.

I live and work in the Boston area, and like most Americans I rely almost
entirely on my automobile to get from one place to the next. Except for an
occasional use of the Boston subway system, I use my car to get around
because the public transportation infrastructure is too limited to get me to
my destination. Since millions of others in Boston and elsewhere are in the
same predicament, our highway infrastructure is now well past the point
of coping with the traffic volume. I know I'd be appalled if I knew exactly
how much of my life I've wasted sitting in traffic jams.

There are some interesting similarities between networked computing
systems and transportation systems, the most significant of these be-
ing that the success of both depends on scalable infrastructure. Scal-
able transportation systems comprise not just obvious infrastructure ele-
ments, such as trains and rails or airplanes and airports. They also require
scheduling, routing, maintenance, ticketing, and monitoring, for example,
all of which must scale along with the physical transportation system it-
self. Similarly, networked computing requires not only host machines and
networks~—the physical computing and communication infrastructure—

xi

xii Foreword

but also software-based scheduling, routing, dispatching, configuration,
versioning, authentication, authorization, and monitoring that allows the
networked system to scale as necessary.

An ironic fact about infrastructure is that it's extremely difficult to do
well, and yet the more transparent to the user it is, the more success-
ful we consider it to be. Despite the rugged terrain of the Swiss Alps, for
example, a few architects, engineers, and builders have applied their ex-
pertise to provide an efficient transportation system that millions of people
in Switzerland use daily with ease. In fact, the system is so reliable and
easy to use that you quickly take it for granted, and it becomes transparent
to you. For example, when boarding the Swiss railway your focus is simply
on getting from one point to another, not on the machinery used to get
you there. Unless you're a tourist, you probably miss the fact that you're
traversing a tunnel that took years to design and build, or ascending an
incline so steep that the railway includes a cog rail to help the train climb.
The rail infrastructure does flawlessly what it's supposed to do, and as a
result, you don’t even notice it.

This book is about infrastructure software, normally called middleware,
for networked computing systems. It's called middleware because it's the
“waist in the hourglass” that resides above the operating system and net-
works, but underneath the application. Middleware comes in a wide va-
riety of shapes, sizes, and capabilities, ranging from J2EE application
servers, asynchronous messaging systems, and CORBA ORBs to software
that monitors sockets for small embedded systems. Middleware must sup-
port an ever-wider variety of applications, operating systems, networking
protocols, programming languages, and data formats. Without middle-
ware, taming the ever-increasing diversity and heterogeneity in networked
computing systems would be tedious, error prone, and expensive.

Despite the variety of types of middleware, and the variety of issues that
middleware addresses, different types of middleware tend to use the same
patterns and common abstractions to master complexity. If you were to
peek inside a scalable and flexible application server, messaging system,
or CORBA ORB, for example, you would likely find that they employ sim-
ilar techniques for tasks such as connection management, concurrency,
synchronization, event demultiplexing, event handler dispatching, error
logging, and monitoring. Just as the users of the Swiss railways far out-
number those who designed and built it, the number of users of successful
middleware far exceeds the number of people who designed and built it. If

Foreword xiid

you design, build, or use middleware, your success depends on knowing,
understanding, and applying these common patterns and abstractions.

While many understand the need for scalability and flexibility in mid-
dleware, few can provide it as effectively as the ADAPTIVE Communica-
tion Environment (ACE) that Doug Schmidt and Steve Huston describe in
this book. ACE is a widely used C++ toolkit that captures common pat-
terns and abstractions used in a variety of highly successful middleware
and networked applications. ACE has become the basis for many net-
worked computing systems, ranging from real-time avionics applications
to CORBA ORBs to mainframe peer-to-peer communication support.

Like all good middleware, ACE hides the complexity of the diverse and
heterogeneous environments beneath it. What sets ACE apart from most
other infrastructure middleware, however, is that even though it allows for
maximum flexibility wherever needed by the application, it doesn’t degrade
the performance or scalability of the system. Being a long-time middleware
architect myself, I know all too well that achieving both performance and
flexibility in the same package is hard.

In a way, though, the flexibility and performance aspects of ACE don't
surprise me. Due to my long-time association with Doug, I'm well aware
that he is a pioneer in this area. The wide variety of scalable, high-
performing, and flexible middleware that exists today clearly bears his
mark and influence. His teaming with Steve, who’s a gifted C++ devel-
oper and author whose work on ACE has led to many improvements over
the years, has yielded a work that's a “must read” for anyone involved
in designing, building, or even using middleware. The increasing perva-
siveness of the World Wide Web and of interconnected embedded systems
means that the number, scale, and importance of networked computing
systems will continue to grow. It's only through understanding the key
patterns, techniques, classes, and lessons that Doug and Steve describe
in this book that we can hope to supply the middleware infrastructure to
make it all transparent, efficient, and reliable.

Steve Vinoski

Chief Architect & Vice President, Platform Technologies
IONA Technologies

September 2001

About This Book

Over the past decade, concurrent object-oriented network programming
has emerged as an effective paradigm for developing software applications
whose collaborating objects can either be

1. Collocated within one process or computer or
2. Distributed across a set of computers connected by a network, such

as an embedded system interconnect, a local area network (LAN), an
enterprise intranet, or the Internet.

When objects are distributed, the various entities that constitute these ob-
jects must communicate and coordinate with each other effectively. More-
over, they must continue to do so as applications change over their life-
times. The placement of objects, the available networking infrastructure,
and platform concurrency options allow for a level of freedom that’s pow-
erful, yet challenging.

When designed properly, concurrent object-oriented network program-
ming capabilities can add a great deal of flexibility to your application op-
tions. For instance, in accordance with the requirements and resources
available to your projects, you can use

Real-time, embedded, or handheld systems

Personal or laptop computers

An assortment of various-sized UNIX or Linux systems
“Big iron” mainframes and even supercomputers

You'll likely encounter complex challenges, however, when developing and
porting networked applications on multiple operating system (OS) plat-
forms. These complexities appear in the form of incompatible networking

xv

xvi About This Book

protocols or component libraries that have different APIs and semantics on
different hardware and software platforms, as well as accidental complex-
ities introduced by limitations with the native OS interprocess communi-
cation (IPC) and concurrency mechanisms themselves. To alleviate these
problems, the ADAPTIVE Comununication Environment (ACE) provides an
object-oriented toolkit that runs portably on dozens of hardware and OS
platforms, including most versions of Win32 and UNIX, as well as many
real-time and embedded operating systems.

Some would have you believe that de facto or de jure OS standards,
such as POSIX, UNIX98, or Win32, are all programmers need to shield
their applications from portability challenges. Unfortunately, the adage
that “the nice thing about standards is that there are so many to choose
from” [Tan96] is even more applicable today than it was a decade ago.
There are now dozens of different OS platforms used in commercial, aca-
demic, and governmental projects, and the number of permutations grows
with each new version and variant.

We've developed many multiplatform, concurrent, and networked sys-
tems for the past two decades. We can therefore assure you that OS
vendors often choose to implement different standards at different times.
Moreover, standards change and evolve. It’s likely that you’'ll work on mul-
tiple platforms that implement different standards in different ways at dif-

ferent times. Programming directly to OS APIs therefore yields the following
two problems:

1. It's error-prone since native OS APIs written in C often lack type-
safe, portable, reentrant, and extensible system function interfaces
and function libraries. For example, endpoints of communication in
the widely used Sockets API (discussed in Chapter 2) are identified
via weakly typed integer or pointer I/O handles, which increase the
likelihood of subtle programining errors at run-time.

2. It encourages inadequate design techniques since many networked
applications written using OS APIs are based upon algorithmic de-
sign, rather than object-oriented design. Algorithmic design decom-
poses the structure of an application according to specific functional
requirements, which are volatile and likely to evolve over time. This
design paradigm therefore yields nonextensible software architectures
that can’t be customized rapidly to meet changing application require-
ments [Boo94].

About This Book xvii

In this age of economic upheaval, deregulation, and stiff global competi-
tion, it's becoming prohibitively expensive and time consuming to develop
applications entirely from scratch using native OS APIs and algorithmic
design techniques.

If you've been developing networked software systems for many years,
you may have learned to accept some of these problems as a fact of life.
There is a better way, however. In this book, we show how C++ and ACE
provide object-oriented capabilities that allow you to avoid many traps and
pitfalls, while still leveraging standards—and even certain platform-specific
features—whenever possible. Object-oriented designs exhibit greater sta-
bility over time than algorithmic designs, which makes them the preferred
basis for developing many types of networked applications.

Not surprisingly, there’s a price for all this flexibility: you may need
to learn some new concepts, methods, patterns, tools, and development
techniques. Depending on your background, this learning curve may be
trivial or it may initially seem steep. The bottom line, however, is_that the
object-oriented paradigm can offer you a mature set of techniques that al-
leviates many challenges of networked application development. This book
presents a series of concrete examples to illustrate the object-oriented tech-
niques used to develop and apply the classes in the ACE toolkit. You can

use the same techniques and ACE classes to simplify your own applica-
tions.

Intended Audience

This book is intended for “hands-on” developers or advanced students in-
terested in understanding the strategies and tactics of concurrent network
programming using C++ and object-oriented design. We describe the key
design dimensions, patterns, and principles needed to develop flexible and
efficient concurrent networked applications quickly and easily. Our nu-
merous C++ code examples reinforce the design concepts and illustrate
concretely how to use the core classes in ACE right away. We also take you
“behind the scenes” to understand how and why the IPC and concurrency
mechanisms in the ACE toolkit are designed the way they are. This mate-
rial will help to enhance your design skills and to apply C++ and patterns
more effectively in your own object-oriented networked applications.

About This Book

This book is not a comprehensive tutorial on object-oriented develop-
ment, patterns, UML, C++, systems programming, or networking. We
therefore assume readers of this book have some familiarity with the fol-
lowing topics:

Object-oriented design and programming techniques, for example,
frameworks [Joh97, FJS99b, FJS99a], patterns [GHJV95, BMR+96,
SSRBO00}, modularity [Mey97], information hiding [Par72], and mod-
eling [Boo94]

Object-oriented notations and processes, such as the Unified Mod-
eling Language (UML) [RJB98], eXtreme Programming [Bec0OO], and
the Rational Unified Process (RUP) [JBR99]

Fundamental C++ language features, such as classes, inheritance,
dynamic binding, and parameterized types [Bja00}

Core systems programming mechanisms, such as event demulti-
plexing, process and thread management, virtual memory, and IPC
mechanisms and APIs commonly available on UNIX [Ste98, Ste99,
Ste92, Lew95, KSS96, But97] and Win32 [Ric97, Sol98, JO99] plat-
forms

Networking terminology and concepts, such as TCP/IP [Ste93], re-

mote operation invocations [ObjO1], and client/server architectures
[CS92]

We encourage you to use the extensive bibliography to locate sources of
information on topics about which you want to learn more.

This book is also not an ACE programmer’s manual; that is, we don’t
explain every method of every class in ACE. For that level of detail we
refer you to the extensive online ACE documentation, generated by Doxy-
gen [DimO1], at http://ace.ece.uci.edu/Doxygen/ and http://www.
riverace.com/docs/. Instead, this book focuses on

e The key concepts, patterns, and C++ features that shape the design

of successful object-oriented networked applications and middleware
and

e The motivation behind, and basic usage of, the most commonly used

ACE TCP/IP and concurrency wrapper facade classes

About This Book xix

Structure and Content

This book describes how C++ and middleware help address key challenges
associated with developing networked applications. We review the core na-
tive OS mechanisms available on popular OS platforms and illustrate how
C++ and patterns are applied in ACE to encapsulate these mechanisms
in class library wrapper facades that improve application portability and
robustness. The book’s primary application example is a networked log-
ging service that transfers log records from client applications to a logging

server over TCP/IP. We use this service as a running example throughout
the book to

e Show concretely how C++ and ACE can help achieve efficient, pre-
dictable, and scalable networked applications and

e Demonstrate key design and implementation considerations and so-
lutions that will arise when you develop your own concurrent object-
oriented networked applications

The book is organized into 11 chapters as follows:

e Introduction—Chapter O presents an introduction to C++ network
programming. It starts by outlining the problem space and present-
ing the challenges that can arise when applications extend beyond a
single thread in a single process. We then introduce a taxonomy of
middleware layers and describe how host infrastructure middleware
and the ACE toolkit can be applied to address common network pro-
gramming challenges.

e Part I—Chapters 1 through 4 outline communication design alter-
natives and describe the object-oriented techniques used in ACE to
program OS IPC mechanisms effectively. The resulting classes form
the basis of the first version of the book’s running example, a net-
worked logging service.

e Part II—Chapters 5 through 10 outline concurrency design alterna-
tives and describe the object-oriented techniques used in ACE to pro-
gram OS concurrency mechanisms effectively.

Throughout Parts I and II we present a series of increasingly sophisticated
implementations of our networked logging service to illustrate how the ACE
IPC and concurrency wrapper facades can be applied in practice.

Appendix A summarizes the class design and implementation principles
that underlie the ACE IPC and concurrency wrapper facades. Appendix B

xx About This Bock

explains the inception and open-source evolution of ACE over the past
decade and outlines where it’s heading in the future. The book concludes
with a glossary of technical terms (including the italicized terms in this
book), an extensive list of references for further research, and a general
subject index.

Related Material

This book focuses on resolving complexity using specific C++ features,
patterns, and ACE. The second volume in this series—C++ Network Pro-
gramming: Systematic Reuse with ACE and Frameworks [SH]—extends our
coverage to include object-oriented network programming frameworks pro-
vided by ACE. These frameworks reify common usage patterns of the ACE
wrapper facade classes presented in this book to support broader, more
extensible levels of systematic reuse. A distinguishing factor between the
ACE wrapper facade classes covered in this book and the ACE framework
classes covered in Volume 2 is that the ACE wrapper facade classes have
few virtual methods, whereas the ACE framework classes have mostly vir-
tual methods.

This book is based on ACE version 5.2, released in October 2001. The
ACE software and all the sample applications described in our books are
open-source and can be downloaded at http://ace.ece.uci.edu and
http://www.riverace.com. These sites also contain a wealth of other
material on ACE, such as tutorials, technical papers, and an overview of
other ACE wrapper facades for IPC and synchronization mechanisms that
aren't covered in this book. We encourage you to obtain a copy of ACE so
you can follow along, see the actual ACE classes and frameworks in com-
plete detail, and run the code examples interactively as you read through
the book. Precompiled versions of ACE can also be purchased at a nominal
cost from http://www.riverace.com.

To learn more about ACE, or to report any errors you find in the book,
we recommend you subscribe to the ACE mailing list, ace-usersecs.
wustl.edu. You can subscribe by sending e-mail to the Majordomo list
server at ace-users-request@cs.wustl.edu. Include the following com-
mand in the body of the e-mail (the subject line is ignored):

subscribe ace-users [emailaddress@domain]

About This Book xxi

You must supply emailaddress@domain only if your message’s From ad-
dress is not the address you wish to subscribe.

Postings to the ACE mailing list are also forwarded to the USENET
newsgroup comp . soft-sys.ace. Archives of postings to the ACE mailing
list are available at http://groups.yahoo.com/group/ace-users.

Acknowledgments

Champion reviewing honors go to Christopher Allen, Tomer Amiaz, Alain
Decamps, Don Hinton, Susan Liebeskind, Dennis Mancl, Patrick Rabau,
Eamonn Saunders, and Johnny Willemsen, who reviewed the entire book
and provided extensive comments that improved its form and content sub-
stantially. Naturally, we are responsible for any remaining problems.

Many other ACE users from around the world provided feedback on
drafts of this book, including Mark Appel, Shahzad Aslam-Mir, Kevin Bai-
ley, Barry Benowitz, Emmanuel Croze, Yasir Faiz, Gillmer Derge, lain Han-
son, Brad Hoskins, Bob Huston, Christopher Kohlhoff, Serge Kolgan, Andy
Marchewka, Jeff McNiel, Phil Mesnier, Arturo Montes, Aaron Nielsen, Jeff
Parsons, Pim Philipse, Yaron Pinto, Stephane Pion, Nick Pratt, Paul Rubel,
Shourya Sarcar, Leo Stutzmann, Tommy Svensson, Alain Totouom, Roger
Tragin, and Reuven Yagel.

We are indebted to all the members, past and present, of the DOC
groups at Washington University, St. Louis and the University of Califor-
nia, Irvine, and the team members at Object Computing Inc. and Riverace
Corporation, who developed, refined, and optimized many of the ACE capa-
bilities presented in this book. This group includes Everett Anderson, Alex
Arulanthu, Shawn Atkins, John Aughey, Darrell Brunsch, Luther Baker,
Don Busch, Chris Cleeland, Angelo Corsaro, Chad Elliot, Sergio Flores-
Gaitan, Chris Gill, Pradeep Gore, Andy Gokhale, Priyanka Gontla, Myrna
Harbibson, Tim Harrison, Shawn Hannan, John Heitmann, Joe Hoffert,
James Hu, Frank Hunleth, Prashant Jain, Vishal Kachroo, Ray Klefs-
tad, Kitty Krishnakumar, Yamuna Krishnamurthy, Michael Kircher, Fred
Kuhns, David Levine, Chanaka Liyanaarachchi, Michael Moran, Ebrahim
Moshiri, Sumedh Mungee, Bala Natarajan, Ossama Othman, Jeff Par-
sons, Kirthika Parameswaran, Krish Pathayapura, Irfan Pyarali, Sumita
Rao, Carlos O'Ryan, Rich Siebel, Malcolm Spence, Marina Spivak, Naga
Surendran, Steve Totten, Bruce Trask, Nanbor Wang, and Seth Widoff.

xxii About This Book

We also want to thank the thousands of C++ developers from over fifty
countries who've contributed to ACE during the past decade. ACE’s ex-
cellence and success is a testament to the skills and generosity of many
talented developers and the forward-looking companies that have had the
vision to contribute their work to ACE’s open-source code base. With-
out their support, constant feedback, and encouragement, we never would
have written this book. In recognition of the efforts of the ACE open-source
community, we maintain a list of all contributors, which is available at
http://ace.ece.uci.edu/ACE-members.html.

We are also grateful for the support from colleagues and sponsors of
our research on patterns and development of the ACE toolkit, notably the
contributions of Ron Akers (Motorola}, Steve Bachinsky (SAIC), John Bay
(DARPA), Detlef Becker (Siemens), Dave Busigo (DARPA), John Buttitto
(Sun), Becky Callison (Boeing), Wei Chiang (Nokia), Joe Cross (Lockheed
Martin), Lou DiPalma (Raytheon), Bryan Doerr (Boeing), Karlheinz Dorn
(Siemens), Matt Emerson (Escient Convergence Group, Inc.), Sylvester Fer-
nandez (Lockheed Martin), Nikki Ford (DARPA), Andreas Geisler (Siemens),
Helen Gill (NSF), Bob Groschadl (Pivotech Systems, Inc.), Jody Hagins
(ATD), Andy Harvey (Cisco), Sue Kelly (Sandia National Labs), Gary Koob
(DARPA), Petri Koskelainen (Nokia Inc), Sean Landis (Motorola), Patrick
Lardieri (Lockheed Martin), Doug Lea (SUNY Oswego), Hikyu Lee (SoftLinx),
Joe Loyall (BBN), Mike Masters (NSWC), Ed Mays (U.S. Marine Corps),
John Mellby (Raytheon), Jeanette Milos (DARPA), Stan Moyer (Telcordia),
Russ Noseworthy (Object Sciences), Dieter Quehl (Siemens), Vijay Ragha-
van (Vanderbilt U.), Lucie Robillard (U.S. Air Force), Craig Rodrigues (BBN),
Rick Schantz (BBN), Steve Shaffer (Kodak), Tom Shields (Raytheon), Dave
Sharp (Boeing), Naval Sodha (Ericsson), Paul Stephenson (Ericsson), Tat-
suya Suda (UCI), Umar Syyid (Hughes), Janos Sztipanovits (Vanderbilt U.),
Gautam Thaker (Lockheed Martin), Lothar Werzinger (Krones), and Don
Winter (Boeing).

Very special thanks go to Susan Cooper, our copy editor, for enhancing
our written material. In addition, we are grateful for the encouragement
and patience of our editor, Debbie Lafferty, our production coordinator,
Elizabeth Ryan, the series editor and inventor of C++, Bjarne Stroustrup,
and everyone else at Addison-Wesley who made it possible to publish this
book.

Finally, we would also like to express our gratitude and indebtedness to
the late W. Richard Stevens, the father of network programming literature.

About This Book xxiii

His books brought a previously unknown level of clarity to the art and
science of network programming. We endeavor to stand on his virtual
shoulders, and extend the understanding that Richard’'s books brought
into the world of object-oriented design and C++ programming.

Steve’s Acknowledgments

I would like to thank God, who gave me an enjoyment of computers and
networking. I hope He’s pleased. To Jane, my wife of 20 years, thank you
for loving me and cheering me on every day. I would not have completed
this work without your support—you are a blessing. Thank you to the late
David N. Drummond, who took a chance on a kid without a degree. And
thank you to Doug Schmidt, a scholar and a gentleman, whose insight,
enthusiasm, and creativity impress and challenge me daily.

Doug’'s Acknowledgments

I've been writing this book for over a decade, so it’s an enormous thrill (and
relief) to see it in print at last! For this, I'm grateful to Steve Huston, Deb-
bie Lafferty, and Bjarne Stroustrup for their immense help and patience
in seeing this project through to fruition. I'd also like to thank my wife
Sonja for her love and support during the writing of this book—now that
it’s finished we’ll have more time for ballroom dancing! Finally, thanks to
my many friends and colleagues at the College of William and Mary; Wash-
ington University, St. Louis; University of California, Irvine; DARPA; and
Siemens—as well as the thousands of ACE and TAO developers and users
worldwide—who have greatly enriched my intellectual and interpersonal
life over the past two decades.

Contents

List of Figures

ix

Foreword xi
About This Book xv
Chapter 0 Design Challenges, Middleware Solutions, and ACE 1
0.1 Challenges of Networked Applications 1
0.2 Networked Application Design Dimensions 5
0.3 Object-Oriented Middleware Solutions 7
0.4 An Overview of the ACE Toolkit 12
0.5 Example: A Networked Logging Service 17
0.6 Summary 19

Part I Object-Oriented Network Programming 21

Chapter 1 Communication Design Dimensions 23
1.1 Connectionless versus Connection-Oriented Protocols 23
1.2 Synchronous versus Asynchronous Message Exchange 26
1.3 Message Passing versus Shared Memory 28

1.4 Sumimary 31

