4

TS T e e L

R\ I R I il 2%

Embedded Microcontrollers

(F=XFENR)

Todd D. Morton #

([11] 44, g % K

4 www.sciencep.com

ERNE EASRERSE 3 S AC S AN

KA 15 il 2

Embedded Microcontrollers

Todd D. Morton &

A 4 %2 K @

=

"B &

A4 A ESH B TR B EMFEM (B Z—,

A BT A X AKX ST R R R AR AR
HTT REMNG B4 8 A1 F0 16 UIERS JLRIES CES L H
RGN, AHEE TR SARTHEE IR LEMEAR,

FF alE B T A B ERA B E R, BAE AR AR RLER A
ARBEES,

English reprint copyright ©2003 by Science Press and Pearson Education North
Asia Limited.

Embedded Microcontrollers. by Todd D. Morton, Copyright (©2001
ISBN 0-13-907577-1
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publish-
ing as PRENTICE HALL, INC.

For sale and distribution in the People’ s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR) .

RTHEARLAERAN(AREREEE RITHEHITBXMPEHEEE HE
REyo

ABHENEH Pearson Education (35 AEHE i RE R) BOLB hin %, Thnss
ERNBHE,

B :01-2003-4429

BB ERSE (CIP) $iE

A IS 28 /() B8 (Morton, T. D.) ¥ . —B A, —JL 5 . 2
KR4t , 2003

(ESMEE B TR BRI B)

ISBN 7-03-011690-9

L MK MHRARBEHS-BEER-#-%x N.TP332.3
[i A< B 354 CIP B8 4% 7 (2003) 58 050474 5
%% .CR2F F F/AGET EER H O HTEGH . NFF

4 % % B B R
FF A FAMRILET 165
BB 4E14:100717

http:// www . sciencep.com

% £ % & B
BE AL RTT SHeBELH

*

2003FE8A® — M FHAE.787x1092 1/16
2003 £ 8 AB-—KEIR EP3K.44 174
Ep#:1—3 000 3.1 050 000

EH:56.00 7T
(hn7g Ep % B o), AL S SR (3046))

] Ml 115 R AR 5 Bk (e SCREEVR)

M B E S

(P ok B I HEFF)
LES P EX XS
RER¥ ¥ 2 %
MR Tl K £ Al
R R Lk
R T F 43k
(378 MIPNZ KA
ESEINC A
PEBERAKE E—F

R R A2
e R
b AL A 2
RS P
B E
ek

WA o
Rk

Preface

This book is intended for anyone who wants to design small- to medium-sized embedded
systems. It was written primarily for electronics engineering technology students, but
should also be appropriate for most engineering students and practicing engineers. It is
currently being used for two one-quarter courses in electronics engineering technology.
The first is a required junior-level course on microprocessor-based applications, and the
second is a senior elective course on embedded systems. The first course covers assembly
language only, and the second course uses C.

Prerequisites for this book include a background in electronic circuits, basic digital
logic, and general C programming. The C programming course is required only for Parts 4
and 5. A background in C and/or C++ is required because this book does not cover C lan-
guage programming basics. It only addresses the concepts and techniques required for
using C in a microcontrolier-based embedded system.

SOFTWARE AND HARDWARE USED IN THE BOOK

‘When writing a book on embedded systems, it is difficult to maintain the balance between
being too specific to one hardware/software set and too general to be practical. [have tried
to keep this balance by focusing on the concepts, processes. conventions, and techniques
used in design and debugging.

The book focuses on the M68HC12 microcontroller from Motorola, but has also
been successfully used in courses that use the M68HC11 family. It is intended to supple-
ment, not replace, vendor documentation. I expect every student to have the complete
vendor documentation for both the MCU and the development board he or she is using. For
example, for the M68HC12 MCU the student should have the CPUI2 Reference Manual
and the Technical Specifications for the specific part. If the M68HC11 is used, the famous
“pink books” are a requirement.

The development hardware used throughout the text is the Motorola 68HC912B32
EVB. In the first part of the text, only a single board is required, and all code is loaded into
RAM. In the second half of the book, the background debug system is used, and the code is
loaded into the target Flash ROM. This requires either two EVBs or one EVB as a target and
a 68HC12 BDM pod such as the Noral 68HC12 BDM debugger. The concepts regarding the
debug process and testing should apply to most modern development systems.

The development software used throughout is the Introl-CODE development system.
Except for the sections that specifically address development using the Introl-CODE system,
the C code is all ANSI-C, and therefore it would be reasonable to use another compiler.

The real-time kernel covered in this text is MicroC/OS-II. It is available in source
form and is widely used. Many of the concepts apply to other kernels, especially the appli-
cations for typical kernel services.

CHAPTER DESCRIPTIONS

The book is divided into five parts. The first half of the book emphasizes assembly code
and the second half focuses on C. Hardware is covered throughout the text, especially in
Part 3. Because of the use of pseudo-C from Chapter 6 on, it is reasonable to cover that ma-
terial with an emphasis on C instead of assembly.

Part 1 Introduction. This part introduces the reader to the background and perspec-
tive required in learning about embedded systems.

Part 2 Assembly Language Programming. This part introduces programming in as-
sembly language and covers the CPU12 programming model and program design. Students
should be able to build a prewritten program after completing Chapter 3, and write complete
programs that are executed by the D-Bug12 monitor in RAM after completing Chapter 6.
Chapter 7 covers some basic applications that are appropriate for assembly code.

Part 3 Microcontroller Hardware and 1/Q. Real-time concepts and I/O hardware are
introduced, including interrupts and basic multitasking. All of the 68HC912B32 /O resources
are covered with the exception of the BDLC. MCU configuration for stand-alone systems
along with bus expansion are covered in Chapters 10 and 11.

Part 4 Programming Microcontrollers in C. Concepts in C for programming real-
time embedded systems are covered. Emphasis is placed on memory usage and program
efficiency appropriate for small MCUs.

Part5 Real-Time Multitasking Kernels. In this part basic multitasking design is cov-
ered along with using MicroC/OS-11, an off-the-shelf kernel.

iv Preface

ACKNOWLEDGMENTS

Without the help and patience of the following people, this text would not have been pos-
sible: Rich Pennington at Introl Corp, Jim Sibigtroth at Motorola University and Austin
Community College, Jean Labrosse at Micrium, Tony Plutino and Dave Hyder at Mo-
torola, Marsh Faber and Mel Downs at Hewlett-Packard, Phil Meek and Harry Erickson at
Noral Micrologics, Dave Garza and staff at Prentice-Hall, Kathleen Kitto and Andrew Pace
at WWU, George Sweiss at ITT Technical Institute, Malvern Phillips at British Columbia
Institute of Technology, the contributors to the Motorola 68HC11 and 68HCI12 listserv,
and, of course, all of my students. You will finally get those labs and homework assignments
graded.

Preface ' v

To Edye, Jeva, and Perry

Ccontents

» PART 1 Introduction

1 Introduction to Microcontrollers 1

1 The Microcomputer 3
2 The 68HC11 and 68HC12 Microcontrollers 14
3 Historical Context 14
4 Software and Hardware Development 15
Summary 22
Exercises 22

1.
1.
1.
1.

» PART 2 Assembly Language Programming

2 Programming Basics 24

2.1 Programming Languages 24
22 Types of Program Segments 30
23 Software Construction 31
Summary 34
Exercises 34

3 Simple Assembly Code Construction 35

3.1 Assembly Source Code 37
32 A Basic Build Process 47

33 Run-Time Debugging—A Tutorial 52
Summary 59
Exercises 60

4 CPU12 Programming Model 61

4.1 The CPU Register Set 61
42 CPU12 Addressing Modes 64
43 The CPU12 Instruction Set 77
Summary 78
Exercises 78

5 Basic Assembly Programming Techniques 80

5.1 Data Transfer 80

5.2 Using the Stack 86

5.3 Basic Arithmetic Programming 92

5.4 Shifting and Rotating 105

55 Boolean Logic, Bit Testing, and Bit Manipulation 106
5.6 Branches and Jumps 113

5.7 Subroutines 120

5.8 Position Independence 128

Summary 132
Exercises 132

6 Assembly Program Design and Structure 137

6.1 Design and Documentation Tools 138
6.2 Structured Control Constructs 143
6.3 Data Storage 155
6.4 Program Structure 162
6.5 = Passing Parameters 163

Summary 172

Exercises 173

7 Assembly Applications 174

7.1 Software Delay Routines 174
7.2 I/O Data Conversions 180
7.3 Basic I/O Routines 194

7.4 Fixed-Point Arithmetic 208

Summary 229
Exercises 229

» PART 3 Microcontroller Hardware and VO

8 Introduction to Real-Time /O and Multitasking 231

8.1 Real-Time Systems 231
8.2 CPU Loads 233

viii Contents

I/O Detection and Response 234
Basic Cooperative Multitasking 261
Using CPUI12 Interrupts 274

Basic Real-Time Debugging 289
Summary 293

Exercises 293

90 00 o0 0O
ok w

9 Microcontroller 170 Resources 295

9.1 General Purpose /O 296
9.2 Timers 306
9.3 Serial /O 347
9.4 A-to-D Conversion 366
Summary 376
Exercises 376

10 The Final Product 378

10.1 MCU Hardware Design 379
10.2 Reset Exceptions 386
10.3 M68HC912B32 Operating Modes 394
10.4 Configuration and Start-Up Code 400
10.5 Final Product Development 406
Summary 416
Exercises 417

11 System Expansion 418
11.1 The Bus Cycle 419
11.2 Chip-Select Logic 421
11.3 Bus Timing Analysis 434
Summary 437
Exercises 438

» PART 4 Programming Microcontrollers in C

12 Modular and C Code Construction 439
12.1 C Source Code 440
12.2 The Modular Build Process 454
12.3 Source-Level Debugging 475
Summary 481
Exercises 481

13 Creating and Accessing Datain C 483

13.1 Introduction to Data Types 484
13.2 ANSI-C Data Types 485
13.3 Variables and Stored Constants 494

Contents ix

134
13.5
13.6
13.7
13.8

Pointers 498

Arrays and Strings 503
Structures 507
Enumerated Types 509
Bit Operations 509
Summary 516
Exercises 517

14 C Program Structures 518

14.1
14.2
14.3
14.4

Control Structures 518
Functions 536

Modules 548

Start-Up and Initialization 557
Summary 564

Exercises 564

» PART 5 Real-Time Multitasking Kernels
15 Real-Time Multitasking in C 566

15.1
15.2
15.3

Real-Time Programming Review 566
Real-Time Kernel Overview 570
Cooperative Kernel Design 574
Summary 591

Exercises 592

16 Using the MicroC/0S-11 Preemptive Kernel

16.1
16.2
16.3
164
16.5
16.6

» APPENDICES

Overview 595

Tasks and Task Switching 603
Interrupt Service Routines 609
Timers 610

Intertask Communication 614
puC/OS-Based Stopwatch Program 638
Summary 645

Exercises 646

A Programming Conventions 648
B Basic 10 651
C ul/0S Reference 672

» REFERENCES

685

» INDEX 687

594

Contents

PART |
Introduction

Introduction to
Microcontrollers

We have all heard the stories about how the microprocessor has revolutionized many aspects
of our everyday lives. The most visible examples are desktop computer systems and the In-
ternet. Another part of this revolution that we do not often hear about is embedded systems.
Embedded systems are electronic systems that contain a microprocessor or microcontroller,
but we do not think of them as computers—the computer is hidden, or embedded, in the
system. Examples of embedded systems include automobiles, industrial controllers, instru-
mentation, network routers, and household appliances, now even including rice cookers and
toasters. Homes in the United States have an average of 30 to 40 microprocessors each, yet
only 45% of these homes have a desktop computer. The rest of these processors are used in
embedded applications.

In this book we will concentrate on the largest segment of the embedded systems
market—the small systems, These are systems that require 8- or 16-bit microprocessors or
microcontrollers. Figure 1.1 shows a typical system, a digital thermometer. It is made up of
a temperature sensor connected to an ADC, a microprocessor (CPU), RAM, ROM, chip
select logic, and an LCD module.

If there are two essential design characteristics for embedded systems they are cost sen-
sitivity and diversity. It does not make sense to use the same system for an infrared remote
control as an unmanned spacecraft. Of course this is obvious, but the wide range of com-
plexity is what has guided the evolution of the technology used for embedded systems. In

/ADSEL

oy ot

Chip b
Select | /ROMSEL
Logic . /RAMSEL
CPU A13-15_/LCDSEL RAM ROM
AD!
RST cs C
——WR cs RNV—C cs Vit
———— WR)
Vi
XTAL DGND
R/W P [
D0-7 A0-12 DO-7 AQ-14 D0-7
DO-7_AQ-15 Vbanp AGND
[AQ-15
DO-7) o
L Do-7 LCD
A0 | s
RW Jwr | TEMP: 32°
/LCOSEL | o

Figure 1.1 A Typical Small Embedded System—Digital Thermometer

addition to this diversity is the requirement that costs must be reduced as much as possible. A
video game system will not sell if it costs $1,000. Yet the processor technology used in a video
game is on a par with that used in desktop PCs. Therefore there cannot be a one-system-fits-all
approach to embedded systems design. Embedded system designs require application-specific
hardware and software, hardware and software designed for each different application.

Another characteristic of embedded systems development is the wide range of skilis
required to design a system. In the simple example shown in Figure 1.1 there are several
technologies represented, as explained in the following list:

» The CPU requires skills in software design and microprocessor interfacing.

» The chip select logic requires familiarity with digital logic.

» The ADC and temperature sensor require skills in analog design and sampling
theory. There may also be some knowledge of basic physics required to understand
the characteristics of the sensor.

» The LCD requires an understanding of user interfaces and the optical characteristics
of the LCD.

In addition, the system may be networked, may run on alternate power sources, or
may be placed in a harsh environment. Some embedded system designs are large enough
so that it is practical to break the design tasks down into specialties. However, it is most
beneficial to understand or at least be interested in learning all the technologies involved.
Because of the diverse skills required, this can be a fascinating and rewarding field for an
engineer or technictan.

2 Chapter 1

> 1.1

THE MICROCOMPUTER

We will start by covering the heart of all embedded systems—the microcomputer. As
shown in Figure 1.2, the microcomputer is made up of the CPU, memory devices, /O de-
vices, and the bus system.

The CPU or central processing unit is another name for a microprocessor. It controls
the system and processes data, the memory stores the CPU’s programs and data, the I/O
devices provide an interface with the outside world, and the bus system provides for a flex-
ible interconnection system. The thermometer in Figure 1.1 is a microcomputer. It has a
CPU, its memory includes a RAM and a ROM device, and the I/O consists of an ADC con-
nected to a temperature sensor and an LCD module. The microcomputer is a very flexible
system. It allows the designer to include only the devices required for the specific applica-
tion, which is especially important for embedded systems.

If a microcomputer system is combined into a single integrated circuit (IC), it is
called a single-chip microcomputer or a microcontroller (MCU). These terms are often
used interchangeably but they really represent two different devices designed for different
applications. A single-chip microcomputer contains resources typically used for computer
systems, such as a memory management unit and a disk controller. The microcontroller, on
the other hand, contains resources typically used for embedded systems, such as timers and
ADCs. We will be focusing on microcontrollers in this text.

To see the effect of using a single-chip microcontroller, let’s go back to our simple
embedded system example in Figure 1.1. There are several ways to implement this design.
We can use a microprocessor-based system, we can use a microcontroller with an external
bus, or we can use a microcontroller in single-chip mode.

If the design is implemented using a microprocessor, all the blocks shown in Figure
1.1 are separate ICs. This means that at least five ICs are required in addition to the tem-
perature sensor and LCD module. Since most of the ICs are connected to the bus, they are
large ICs with a large number of pins. This would result in a relatively expensive large
printed circuit board.

Bus System

CPU

Address - Memory
Data

Control

A

T \
'

Yvy

Figure 1.2 The Microcomputer

introduction to Microcontrollers 3

+5V

=

RST Vi+
Vie T

1Y '

33 | XTAL

T AGND = LoD
PORTA J RS

PORTB _E_JJ_—Z wr | TEMP: 32°
E

Figure 1.3 A Microcontroller-Based System

The next option is to use a microcontroller that is configured in expanded mode.
Expanded mode means the bus system is available outside of the microcontroller IC. If the
microcontroller contains the chip select logic, the RAM, and the ADC, then the system is
down to two ICs, the MCU and the ROM. The PCB size is reduced and typically the cost
will go down. This is a compromise design. The number of ICs has been reduced and, the
flexibility provided by the external bus still exists. It still requires a large ROM device and
the power consumption is still relatively high.

The last option is to implement the design with a microcontroller in single-chip
mode. An MCU in single-chip mode does not provide the bus for external connections.
The extra pins vacated by removing the bus can be used to reduce the size of the IC
package or to add extra VO. As shown in Figure 1.3 this option results in a single-chip
solution. Only the LCD module and temperature sensor circuits are required, so this can be
an extremely cost effective and compact design.

1.1.1 The Microprocessor

The microprocessor or CPU is the controller for the microcomputer system. It con-
trols all the bus activity, performs calculations, and makes decisions. The microprocessor
is programmable—its operations are controlled by a sequence of instructions. These instruc-
tions include three general types: data transfer instructions, arithmetic and logic instructions,
and program control instructions. A sequence of microprocessor instructions is called a pro-
gram or software.

The combination of a programmable CPU and the bus system results in an extremely
flexible system that can easily be customized for a given application. In embedded systems
this flexibility is used to create application-specific hardware that runs a single application-
specific program.

The microprocessors used for embedded systems are relatively simple when com-
pared with microprocessors designed for desktop computers. Currently the highest volume
microcontrollers are those with 8-bit CPUs. Small packages and cost effectiveness are the
guiding factors when selecting a microcontroller for an embedded system. It would not
make sense to use an expensive 32-bit CPU in a television remote control or a toaster.
There are embedded systems on the market that do have powerful 32-bit CPUs, however.

4 Chapter 1

These devices are used in systems that require moving a large amount of data at high
speed, or systems that require a large number of complex calculations. Common applica-
tions for these microcontrollers include video games, laser printers, network routers, or au-
tomotive engine control systems. In this book we focus on the intermediate range of 8- and
16-bit microcontrollers and the design constraints typical of these devices. Some of the
material is certainly applicable to the smallest 4- and 8-bit designs, and some of the mate-
rial also is applicable to the larger 32-bit designs.

1.1.2 The Bus System

The bus system for a microcomputer provides a flexible means to transfer data among
the CPU, the memory, and the /O devices. It is flexible because it is a shared bus. To add a
memory or peripheral device to the system, you simply have to connect them to the bus
system and add the required decoding logic. The CPU controls the bus system by providing
a device address on the address bus and bus control signals on the control bus for direction
and timing. It then either provides data (writes) or samples data (reads) on the data bus.

The Address Bus. The address bus is made up of CPU outputs that contain the source or
destination location for a data transfer. Access to specific locations is controlled on two
levels. Chip select logic decodes the address bus to determine which memory or peripheral
device to access. Then the device address decoding logic decodes the address to determine
the specific location within the device. This is analogous to the postal system in which the
mail is directed first to an area post office based on the address. The post office then directs
the mail to the specific mailbox based on the address.

Most small microcontrollers have a linear address space. A linear address space is
one in which each address referred to by an instruction directly corresponds to that loca-
tion in memory. It is the easiest type of addressing to use but it can result in inefficiencies
in the CPU. Paged memory systems can increase the CPU efficiency but can be difficult to
work with. In a paged system the address bus contains the location information within a
current page of addresses. Another CPU register must be used to select the current page.

The size of the address bus determines the total number of locations that are directly
accessible by the CPU. For each location to have a unique address you can only have as
many locations as you have unique combinations in the address word. Therefore, there are
2V possible addresses for an N-bit address bus.

EXAMPLE 1.1

Addressable Space for a 16-bit Address Bus

The 68HC11 microcontroller has a 16-bit address bus, which is the typical size for a small
microcontroller. What is the maximum number of directly accessible locations?
Solution

For a 16-bit address bus there are 216 = 65,536 locations. For this case we would normally
say there are 64K-bytes of memory space (1K-byte = 21¢ = 1,024 bytes). Note this is not
the same as 103!

Introduction to Microcontrollers 5

