FRRRAR - RETRZRT .

=+ 4

Software Requirements
Using the Unified Process a Practical Approach

AT 2R
EF5 i RSy
(% EhR)

[£] Daniel R. Windle L. Rene Abreo %

Software
Requirements
ol 40t 3 REGS L AT RO ER oK -
We T8 -k B b FAEM HLetEny Jiik m
iR . T LI S iy s K m
4 .

e

m'¥ﬂ~@/i’.m\

www.infopower.com.cn

¥/

MR - R TR

Software Requirements
Using the Unified Process a Practical Approach

PAFF R
K58 iR Oy 1k
(B EAR)

[%] Daniel R. Windle L. Rene Abipd’

TSR 1L

Software Requirements Using the Unified Process A Practical Approach. (ISBN
0-13-096972-9)

Daniel R.Windle &L.Rene Abreo

Copyright © 2003 Pearson Education, Inc.

Original English Language Edition Published by Prentice Hall PTR, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2003.

A 1S ENRH Pearson Education #AX [HL 4t IRAEZE R EHEPY (i, M 108 IR AL & i B X
RO MK, RAT.
REHRE BEFA, ABUMER TR EHRD BABOETES.

A HGH Pearson Education Bithirss, ThrGE A ERH.

AR REFEEFRES: BEF: 01-2003-2433

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).

R PEARSAMEEN (REFETEFE, R ISHITHRATEEBHX) HHR1T,

BBEMEKE (CIP) BiE

BT R—E TS - EOERTS (F) BEY, (X)) TEBRE —gaks —dis HE
M ARAE, 2003

(RRRRE - RETERID

ISBN 7-5083-1506-5

[&.. [M1.OH. OX.. MLEERFFEE-XT VTIPS

FERR A BB CIP BB (2003) 027843 B

MICHR: KRB
A B Z: FERRE - B4 LEEAES
¥ £ BHEER—ETH - SHEOSBTE (MER)
& #F: () Daniel R. Windle. L. Rene Abreo
HRRAT: +E®ENEEY]
fiht: AR =RMEKES @RBURE: 100044
HiG: (010D 88515918 44E[. (010) 88423191
s ACRHEENRIT
D BRI B)EIER BT
: 787X1092 1/16 B 3k: 175
: ISBN 7-5083-1506-5
20037 HILRE IR
20034F7 H FE—IKEIRI
: 35.00 ©

MR RN m
S SESF a1 Ptk =

Preface

We intend that this book provide you with a practical approach to gathering,
analyzing, specifying, and managing software requirements throughout the
software’s life cycle.

If you are an analyst responsible for specifying requirements from which
software systems are built, we think you will find a straightforward and
effective approach to meeting the demands of the users you work with and
the developers and testers you deliver specifications to.

If you are a developer responsible for building software systems from
requirements specifications, we think you will find an effective way to com-
municate all software requirements in a coherent and easy-to-follow manner.

. If you are a tester responsible for testing software systems from a specifi-

cation, we think you'll find that the specifications described in this book
provide a complete and clear control flow model of the entire system, allow-
ing you to systematically develop tests. We also believe you will find that
the requirements artifacts described in this book will allow you to learn a
new system quickly and thoroughly.

If you are a manager of software development or testing, we think you
will find that the establishment and maintenance of requirements artifacts
will ensure that you can always quickly bring new people up to speed on
your systems. We also believe you will find a practical approach to shorten-
ing the time it takes to specify software requirements while maintaining
your organization'’s intellectual property.

xiii

Acknowledgments

First, we would like to thank our wives, Kathleen Windle and Sandi Abreo,
and our children—Tasha Windle, Cynthia Windle, Michael Abreo, and Alex-
andra Abreo—for their understanding and patience as we embarked on this
endeavor.

We would also like to thank our colleagues at the Securities Industry
Automation Corporation in New York City who helped with reviews of this
book, in particular, Mark Lewis and Alex Ciccotelli, who generously gave of
their time. We would like to specifically thank Charles Bowman for setting
us on the path to writing this book.

XV

Contents

Preface iii

Acknowledgments v

PART |
Introducing Good Requirements 1

CHAPTER |
The Importance of Good Requirements 3

Rationale for Good Requirements 3

Approach to Good Requirements 4

Benefits of Good Requirements 5

Impact of Good Requirements on Development and Productivity 5
Impact of Good Requirements on Testing and Quality 6

Impact of Good Requirements on the Organization 6

Identification of a Good Requirement 7

CHAPTER 2
Characteristics of Good Requirements 9

Characteristics of a Good Requirement 9
Characteristics of a Good Set of Requirements 16
Language of Good Requirements 16
Communicability of Good Requirements 17

\%

Vi CONTENTS

CHAPTER 3
Overview of the Artifacts and the Process 19

Introduction to the Artifacts 20
Introduction to the Process 22
Moving from Requirements to Design 27

PART 2
Building the User Requirements 29

CHAPTER 4
Getting to Know the Problem Domain 31

Researching the Area 32

Reading, Reading, Reading 33
Interviewing the Customer and Users 34
Building the Use Cases 36

CHAPTER 5
Actors and Use Cases 39

Defining the Boundaries of the System 41

Moving from Steady State to Steady State 44
Identifying Use Cases 45

Introducing the Change Management System Example 46

CHAPTER 6
Modeling Use Cases 49

Diagramming Use Cases 50
Generalizing Use Cases 51

CONTENTS

Generalizing Use Cases for the Change Management System 52
Relationships Among Use Cases 52

Diagramming Change Management System Use Cases 52
Packaging Use Cases 54

Packaging the Change Management System Use Cases 54

CHAPTER 7
Using Activity Diagrams to Represent Use Cases 57

Elements of Activity Diagrams 58
Change Management System Activity Diagram 65

CHAPTER 8
Writing Use Cases 67

Template Use 68

Step-by-Step Description 69
Alternative Courses 72
Exceptions and Issues 73

Change Management Use Case 74

CHAPTER 9
Using Storyboards to Validate the Use Cases 77

Presentation of Storyboards to the User 78

Evolutionary Graphical User Interface Presentations 78
Other Diagrams and Pictures 80

Presentation of Use Cases to the User 82
Change Management Systems Storyboards 82

Vil

’ Vil CONTENTS

PART 3
Building the Requirements Architecture g5

CHAPTER 10
Entities and Events as Objects 37

Classes and Objects 88
Remembered Events as Classes 92
Change Management System Classes 92

CHAPTER 11
Building a Class Diagram 95

Generalization 96

Polymorphism 98

Aggregation 99

Association 101

Packaging Classes 102

Change Management System Examples 102

CHAPTER 12
Using State Transition Diagrams 107

Introduction to State Transition Diagrams 108
Class-Level State Transition Diagrams 109

Use-Case-Level State Transition Diagrams 111
System-Level State Transition Diagrams 112

Change Management System State Transition Diagram 113

CHAPTER 13
Use Case Realization

by Means of Sequence Diagrams 115
Introduction to Sequence Diagrams 116

Realizing Use Cases in Sequence Diagrams 118
Example Sequence Diagram for the Change Management System

121

CONTENTS ix

PART 4
Building the Specifications 123

CHAPTER 14
Developing a Software Requirements Specification 125

Tailoring the Standard to Meet Your Needs 127

Specifying Functional Requirements from the Class Diagram 127
Specifying Nonfunctional Requirements 130
Identifying Dependencies Between Requirements 130

CHAPTER 15
Developing an Interface Requirement Specification 133

The IRS Template 134

Front Matter of the IRS 134

Reference Section of the IRS 134
Requirement Section of the IRS 135

Protocol and Messages Section of the IRS 137

CHAPTER 16
Verifying the Software Requirements Specification 139

Using the Process to Ensure Good Requirements 140
Using Peer Reviews to Ensure Good Requirements 141
Specifying a Test Tree 142

Analyzing the Test Tree 145

Requirements Verification Checklist 147

X CONTENTS

PART 5
Using the Requirements Architecture 149

CHAPTER 17
Maintaining the System 151

Receiving the Change Request 152

Analyzing the Change 153

Analyzing User Needs 154

Identifying New and Changed Use Cases 154
Identifying New and Changed Requirements 154
Implementing a Release 156

CHAPTER 18
Ensuring Maximum Benefits
from the Requirements 157

Benefits to Development and Productivity Revisited 157
Benefits to Testing and Quality Revisited 158
Benefits to the Organization Revisited 159

PART 6
Appendices 161

APPENDIX A
Planning Model for Requirements Development

Model Work Breakdown Structure 163
Model Effort Allocation 165

Model Schedule Allocation 166
Standard Major Milestones 168

163

CONTENTS

APPENDIX B
Change Management System Artifacts 169

Change Management System Use Cases 170

Change Management System Class Diagrams 214

Change Management System State Diagrams 216

Change Management Software Requirements Specification 219

~ Bibliography 249

Index 251

Tl

The Importance of
Good Requirements

Rationale for Good Requirements

Real-world systems are built every day and based on skimpy requirements. We
know this because most of us have been on projects where the requirements
change daily. Sometimes these changes are due to the customer changing his
mind. More often, these changes are due to clarifications of the software require-
ments that come late in the project. Anyone responsible for the maintenance of
one or more significant projects has also experienced the effects of building sys-
tems with skimpy requirements. Many of us have struggled with reliance on sin-
gle individuals for knowledge about what a system does. Some of us have been
that individual struggling to remember all the interdependencies among the
requirements we are being asked to change to implement a particular release. The
approach described in this book is a practical approach to developing software
requirements. We have successtully delivered a significant number of systems by
using this process and the resulting artifacts. These systems have ranged from
defense command and control systems to web systems to financial transaction
processing systems. We have also recovered the requirements from existing sys-

Approach to Good Requirements

CHAPTER1 THE IMPORTANCE OF GOOD REQUIREMENTS

tems by using this process to alleviate the reliance on individuals and to
improve the speed and quality of maintenance activities.

Requirements tell you the features a system must have as well as what the
software must do to deliver those features. This is a significant aspect of
requirements: they possess a dual nature. Features represent user require-
ments. What the software does represents software requirements. There is a
large gap between user requirements and software requirements. The arti-
facts and process described in this book will help you fill that gap. You work
with the user to determine what features the system must have. From this
feature set, you must derive a set of components that can deliver those fea~
tures. These components and their relationship to each other lead you to a
software architecture. This architecture tells you what the software must do.
The user requirements come from describing the user’s interaction with the
system. You derive the software requirements during analysis by mapping
the user requirements onto the software architecture.

Requirements are normally the work of a requirements analyst. While the
dual nature of requirements may lead an analyst to specialize in user
requirements or software requirements, generally an analyst serves two cus-
tomers. The first is the user of the system. The second is the developer of the
system who must design a system to meet the specified requirements.

The analyst serves another customer indirectly. This customer is the orga-
nization. What a system does for which user is critical knowledge for the
organization. The value a software organization brings to its customers is an
understanding of how the software supports the business. Customers
understand their business. Users understand how they use the software to
work in the business. However, it is usually only the software professionals
that understand what the software does to support the business. Therefore,
good requirements are necessary to ensure that you build the right system
and also to ensure that the organization safely stores the intellectual capital
it possesses.

How many times have you heard the phrase “the user does not know what
he wants”? This phrase is most often wrong. The user often has an idea of
what he wants—he just does not know the specifics. There may be many
reasons for this. One reason may be that the user does not know what is pos-
sible. Another reason may be that the user is considering the software from a

Benefits of Good Requirements 5 l

single point of view. It is up to the analyst to understand what the user
wants, communicate what is possible, and then specify what the user wants
and exactly what the software must do.

To perform this task, the analyst must be able to move forward with the
requirements work in the context of providing feedback to the user and
incorporating that feedback into a growing body of knowledge. A practical
approach to address these challenges is to use a process that builds knowl-
edge incrementally. At the same time, this practical approach would also
augment this process with a structure that saves, relates, and communicates
this information coherently. This structure must also help the analyst keep
this information consistent.

The process described in this book presents a disciplined approach. It
explicitly integrates use cases with various models and the models with
the requirements specification. The use cases represent the user require-
ments. The Software Requirements Specification represents the software
requirements. The models provide the analyst with the tools to ensure that
user requirements are represented by and consistent with the software
requirements.

Benefits of Good Requirements

Good requirements provide many benefits. These benefits impact develop-
ment and productivity, testing and quality, and the organization. You will
enjoy these benefits during the development of new systems as well as dur-
ing maintenance of existing systems.

Impact of Good Requirements on Development
and Productivity

The most visible benefit to this process is faster and higher-quality require-
ments analysis. A full set of requirements allows an analyst to identify all
conflicts between user requirements up front. Identifying all unanswered
questions and getting answers to those questions early saves the time and
effort spent in building the wrong product and the time and effort spent
reworking the products that were based on the poor requirements. A good
set of requirements also represents a single source of a system’s require-

