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Preface

We intend that this book provide you with a practical approach to gathering,
analyzing, specifying, and managing software requirements throughout the
software’s life cycle.

If you are an analyst responsible for specifying requirements from which
software systems are built, we think you will find a straightforward and
effective approach to meeting the demands of the users you work with and
the developers and testers you deliver specifications to.

If you are a developer responsible for building software systems from
requirements specifications, we think you will find an effective way to com-
municate all software requirements in a coherent and easy-to-follow manner.

. If you are a tester responsible for testing software systems from a specifi-

cation, we think you'll find that the specifications described in this book
provide a complete and clear control flow model of the entire system, allow-
ing you to systematically develop tests. We also believe you will find that
the requirements artifacts described in this book will allow you to learn a
new system quickly and thoroughly.

If you are a manager of software development or testing, we think you
will find that the establishment and maintenance of requirements artifacts
will ensure that you can always quickly bring new people up to speed on
your systems. We also believe you will find a practical approach to shorten-
ing the time it takes to specify software requirements while maintaining
your organization'’s intellectual property.
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The Importance of
Good Requirements

Rationale for Good Requirements

Real-world systems are built every day and based on skimpy requirements. We
know this because most of us have been on projects where the requirements
change daily. Sometimes these changes are due to the customer changing his
mind. More often, these changes are due to clarifications of the software require-
ments that come late in the project. Anyone responsible for the maintenance of
one or more significant projects has also experienced the effects of building sys-
tems with skimpy requirements. Many of us have struggled with reliance on sin-
gle individuals for knowledge about what a system does. Some of us have been
that individual struggling to remember all the interdependencies among the
requirements we are being asked to change to implement a particular release. The
approach described in this book is a practical approach to developing software
requirements. We have successtully delivered a significant number of systems by
using this process and the resulting artifacts. These systems have ranged from
defense command and control systems to web systems to financial transaction
processing systems. We have also recovered the requirements from existing sys-



Approach to Good Requirements

CHAPTER1  THE IMPORTANCE OF GOOD REQUIREMENTS

tems by using this process to alleviate the reliance on individuals and to
improve the speed and quality of maintenance activities.

Requirements tell you the features a system must have as well as what the
software must do to deliver those features. This is a significant aspect of
requirements: they possess a dual nature. Features represent user require-
ments. What the software does represents software requirements. There is a
large gap between user requirements and software requirements. The arti-
facts and process described in this book will help you fill that gap. You work
with the user to determine what features the system must have. From this
feature set, you must derive a set of components that can deliver those fea~
tures. These components and their relationship to each other lead you to a
software architecture. This architecture tells you what the software must do.
The user requirements come from describing the user’s interaction with the
system. You derive the software requirements during analysis by mapping
the user requirements onto the software architecture.

Requirements are normally the work of a requirements analyst. While the
dual nature of requirements may lead an analyst to specialize in user
requirements or software requirements, generally an analyst serves two cus-
tomers. The first is the user of the system. The second is the developer of the
system who must design a system to meet the specified requirements.

The analyst serves another customer indirectly. This customer is the orga-
nization. What a system does for which user is critical knowledge for the
organization. The value a software organization brings to its customers is an
understanding of how the software supports the business. Customers
understand their business. Users understand how they use the software to
work in the business. However, it is usually only the software professionals
that understand what the software does to support the business. Therefore,
good requirements are necessary to ensure that you build the right system
and also to ensure that the organization safely stores the intellectual capital
it possesses.

How many times have you heard the phrase “the user does not know what
he wants”? This phrase is most often wrong. The user often has an idea of
what he wants—he just does not know the specifics. There may be many
reasons for this. One reason may be that the user does not know what is pos-
sible. Another reason may be that the user is considering the software from a
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single point of view. It is up to the analyst to understand what the user
wants, communicate what is possible, and then specify what the user wants
and exactly what the software must do.

To perform this task, the analyst must be able to move forward with the
requirements work in the context of providing feedback to the user and
incorporating that feedback into a growing body of knowledge. A practical
approach to address these challenges is to use a process that builds knowl-
edge incrementally. At the same time, this practical approach would also
augment this process with a structure that saves, relates, and communicates
this information coherently. This structure must also help the analyst keep
this information consistent.

The process described in this book presents a disciplined approach. It
explicitly integrates use cases with various models and the models with
the requirements specification. The use cases represent the user require-
ments. The Software Requirements Specification represents the software
requirements. The models provide the analyst with the tools to ensure that
user requirements are represented by and consistent with the software
requirements.

Benefits of Good Requirements

Good requirements provide many benefits. These benefits impact develop-
ment and productivity, testing and quality, and the organization. You will
enjoy these benefits during the development of new systems as well as dur-
ing maintenance of existing systems.

Impact of Good Requirements on Development
and Productivity

The most visible benefit to this process is faster and higher-quality require-
ments analysis. A full set of requirements allows an analyst to identify all
conflicts between user requirements up front. Identifying all unanswered
questions and getting answers to those questions early saves the time and
effort spent in building the wrong product and the time and effort spent
reworking the products that were based on the poor requirements. A good
set of requirements also represents a single source of a system’s require-



