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Part 2

KINEMATICS OF A PARTICLE
AND A RIGID BODY

Chapter 10
Kinematics of a Particle

§ 58. Introduction to Kinematics

Kinematics is the section of mechanics which treats of the geomet-
ry of the motion of bodies, without taking into account their iner-
tia (mass) or the forces acting on them.

On the one hand, kinematics is an introduction to dynamics, in-
sofar as the fundamental concepts and relationships of kinematies
have to be understood before studying the motion of bodies taking
into account the action of forces. On the other hand, the methods of @
kinematics are in themselves of practical importance, for example in
studying the transmission of motion in mechanisms. That is why
the demands of the developing machine-building industry led to
the emergence of kinematics as a separate division of mechaujes (in
the first half of the 19th century).

By motion in mechanics is meant the relative displacement with
time of a body in space with respect to other bodies. @
In order to locate a moving body (or particle) we assume a coor-

dinate system, which we call the frame of reference or reference sys-
tem, to be fixed relative to the body with respect to which the motion
is being considered. If the coordinates of all the points of a body re- &)
main constant within a given frame of reference, the body is said
to be at rest relative to that reference system. If, on the other hand,
the coordinates of any points of the body change with time, the body
is said to be in motion relative to the given frame of reference (and
consequently, relative to a body which is fixed with respect to the
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frame of reference). When we speak of the motion of a body with ves-
pect to a given frame of reference, we shall mean its motion relative
to a body fixed with respect to that frame of reference.

Any motion in space takes place with time. In mechanics we deal
with three-dimensional Euclidean space in which all dimensions
are measured by the methods of Euclidean geometry. The unit of
length, by which distance is measured, is the metre. Time in mecha-
nics is considered as universal, i.e., as passing simultaneously in all
our frames of reference. The unit of time is one second.®™

Euclidean space and universal time reflect only approximately the
actual properties of space and time.Qur daily experience shows, how-
ever, that for the motions considered in mechanics (at velocities
much below the velocity of light) the approximation is sufficiently
accurate for all practical purposes.

Time is a continuously varying quantity. In problems of kinema-
tics, time ¢ is taken as an independent variable (the argument).
All other variables (distance, speed, etc.) are regarded as changing
with time, i.e., as functions of time t. Time is measured from some
initial instant (¢ = 0} which is specified for every problem. Any given
instant of time ¢ is specified by the number of seconds that has passed
between the initial and the given time. The difference between suc-
cessive instants of time is called the time interval.

The principles of kinematics, evolved from and confirmed by prac-
tical experience, are based on the axioms of geometry. No other laws
or axioms are necessary for the kinematic study of motion.

For the solution of problems of kinematics, the specific motion
under consideration has to be described.

To describe the motion, or the law of motion, of a given body (particle)
kinematically means to specify the position of that body (particle) rela-
tive to a given frame of reference for any moment of time. One of the
main problems of kinematics is that of describing the motion of par-
ticles or bodies in terms of mathematical expressions. Hence, we
shall commence the investigation of the motion of any object with
determining the ways of describing that motion.

The principal problem of kinematics is that of determining all
the kinematic characteristics of the motion of a body as a whole or
of any of its particles (path, velocity, acceleration, etc.)
when the law of motion for the given body is known. For the so-
lution of this problem we must know either the equations

of motion for the given body or for another body kinematically asso-
ciated with it.

%) The International System of Units (see § 101) defines the metre as the
length equal to 1650 763,73 wave lengths in vacuo of the radiation correspond-
ing to the transition between the levels of Zplllg:and 5d; of the krypton-86 atom;

the second is defined as 1/31 556 925.9747 of the tropica for 1600 3
at 12 hous ephemeris time. 8 iropical year 10 anuary 0
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We shall start the study of kinematics with an investigation of
the motion of the simplest body—a particle (kinematics of a particle),
proceeding later to the examination of the kinematics of rigid bodies.

§ 59. Methods of Describing Motion of a Particle, Path

We shall begin the study of kinematics with examining the methods
of describing motion. To describe the motion of a particle, it is ne-
cessary to specify its position in a chosen frame of reference at any
given time. There are three methods of describing motion: (1) the
natural method, (2) the coordinate method, (3) the vector method.

(1) Natural Method of Describing Motion. The continuous curve
described by a particle moving with respect to a given frame of re-
ference is called the path of that particle.
If the path is a straight line, the motion
is said to be rectilinear, if the path is a
curve, the motion is curvilinear.

The natural method of describing mo-
tion is convenient when the particle’s path
is known at once. Let the curve AB in
Fig. 136 be the path of a particle M mo-

Fig. 136 ving with respect to a frame of reference
O,%,4,2,. Take any fixed point @ on the
path as the origin of another frame of

reference; now, taking the path as an arc-coordinate axis,
assume the positive and negative directions, as is done with rectan-
gular axes. The position of the particle M on the path is now speci-
fied by a single coordinate s, equal to the distance from O to M mea-
sured along the arc of the path and taken with the appropriate sign.
The displacement of particle M carries it through positions M,
Mg, ..., l.e., the distance s changes with time. In order to know

the position of M on the path at any instant, we must know the rela-
tion

s =1 (t). (1)

Lq. (1) expresses the law of motion of particle M along its path.

Thus, in order to describe the motion of a particle by the natural
method, a problem must state: (1) the path of the particle; (2) the ori-
gin on the path, showing the positive and negative directions; (3)
thefe(ql)mzion of the particle’s motion along the path in the form s =
= f (I). '

For example, if a particle is moving from an origin O along a curve
0 that its distance from O increases in proportion to the square of
the time, the equation of motion will be

" 1
5 = at=,
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where a is the displacement of the particle in the first second. At time
t, = 2 s the particle will be at distance 4a from O, etc. Consequently,
knowing Eq. (1) we can determine the position of a moving particle

at any instant.
Note that s in Eq. (1) denotes the moving particle's position,

not the distance travelled by it. For example, if the particle in

g M
¥ 4
le— gl
Fig. 137

Fig. 136 travels from O to M, and then reverses its motion to point
M, its coordinate at that moment is s = OM, but the distance it

travelled is OM,; + M, M, i.e., not s.

In the case of rectilinear motion, if axis Ox is directed along the
particle’s path (Fig. 137), we have s = z, yielding the law of rectili-
near motion of a particle as

z = f(1). (2)

(2) Coordinate Method of Describing Motion.
The natural method of describing motion offers
a very clear picture, but a particle’s path may
not be known, which is why the coordinate
method is employed more frequently.

The position of a particle with respect to a gi-
ven frame of reference Oxyz can be specified by
its Cartesian coordinates z, y, z (Fig. 138). When motion takes
place, the three coordinates will change with time. If we want to
know the equation of motion of a particle, i.e., its location in spa-
ce at any instant, we must know its coordinates for any moment of
time, i.e., the relations

z=f®), y=/fs®), 2=1,0 (3)

should be known.

Eqs. (3) are the equations of motion of a particle in terms of the Car-
tesian rectangular coordinates. They describe the curvilinear motion
of a particle by the coordinate method *.

If a particle moves in one plane, then, taking the plane for the xy
plane, we obtain two equations of motion:

z=f0#, y=7Ff (@) (4)

*) The motion of a particle can be described in other coordinate systems:
polar (see § 71), spherical, etc.
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Finally, in the case of rectilinear motion, if axis x is directed along
the path, the motion is described by the single equation (2) obtained
before (in this case the coordinate and natural methods of describing
motion coincide).

Eqgs. (3) or (4) are, at the same time, the equations of the particle’s
path in paramelric form, where the time ¢ is the parameter. By eli-
minating time ¢ from the equations of motion we can obtain the equa-
tion of the path in the usual form, i.e., in the form of a relation
between the particle’s coordinates.

Examples. (1) Letl a particle’s motion in a plane Oxy be given by
the equations

xo=2t, y = 121% (a)

From these equations at time ¢ = 0 the particle is at M, (0, 0),
i.e., at the origin of the coordinate system; at time ¢, = 1 s it is at
M, (2, 12), ete. Thus, equations (a) actually define the particle’s
position at any instant. By assigning ¢ different values and drawing
a graph of the particle’s displacement we can construct its path.

Another way of determining the path is by eliminating ¢ from the

equations (a). From the first equation £ = = ;substituting it for ¢

in the second equation, we obtain y = 3z%. Hence the path is a para-
bola with the apex at the origin of the coordinate axes and the axis
parallel to axis Oy.

(2) Consider the case when a particle’s motion is described by the
equations:

x =asinnat, y = acosat, z=a cos nt. (b)

Squaring the first two equations and adding them, we obtain: z2 +
+ y* = a® Also, from the second and third equations y = z. Thus,
the path lies on the line of intersection of a circular cylinder of ra-
dius a, whose axis coincides with axis Oz, with a plane y = 2z bi-
secting the spatial angle between planes Oxy and Ozz, i.e., an ellipse
with semiaxes @ and a}/ 2 lying in the plane y = z.

For Bother examples of determining path see Problems 53, 54,
26 (§ 65).

(3) Vector Method of Describing Motion. Let a particle M be mo-
ving relative to any frame of reference Oxyz. The position of the par-
ticle at any instant can be specified by a vector » drawn from the
origin @ to the particle M (Fig. 139). Vector » is called the radius
vector of the particle M.

When the particle moves, the vector » changes with time hoth
in magnitude and direction. Thus,  is a variable vector (a vector
function) depending on the argument #:

r =9 (1. ()

@
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Eq. (0) describes the curvilinear motion of a particle in vector

form and can be used to construct a vector » for any particular mo-

@ ment of time and to determine the position of the moving particle
at that moment.

The locus of the tips of vector » defines the path of the moving
particle.

The vector method is convenient for establishing general depen-
dencies, as it describes a particle's motion in terms of one vector.

® equation (3) instead of the three scalar equations (3).

The relationship between tbe coordinate and vector methods of
describing motion can easily be established by introducing unit
vectors ¢, §, & directed along the z, y,

® . axes, respectively (see Fig. 139).
As the projections of vector » on the co-
ordinate axes are equal to the coordina-
tes of the particle M, ie. r, =2, r, =
=¥, r'; = Z, we obtain

r =z + yj + zk. (6)

Hence if, for example, the motion of
a particle in plane Ozy is given in co- Fig. 139
ordinate form by the equations 2z =
=2t, y = 12?, the vector equation (5) of that motion will be

r = 2t 4+ 1283,

Uging this equation we can construct vector » and determine the
particle’s position at any instant {. For example, at t, =1 s, 1, =

= 24 + 125 and can be constructed as the diagonal of the correspon-
ding parallelogram, etc.

Conversely, if a particle's motion is described in vector form by,
for example, the equation » = (1 —¢t) ¢ + 2t*j — 3tk, the equation
of motion in coordinate form will bez = (1 — #), y = 212,z = -3¢,

§ 60*. Conversion From Coordinate
to Natural Method of Describing Motion

It has been shown that if motion is described by the equations (3)
or (4),the path of the particle can be determined, Tt is, furthermore,

known that ds* = dz* + dy* + 47, or ds —V 22422 dt, where
T=-g3. etc. Hence, assuming that at ¢t — 0 the displacement s — 0,

11 —860
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we obtain®
t

s= | V 24 yrs-2ae )
0

After integrating, Eq. (7) yields the equation of motion along the

path in the form (1). 1f the motion is described by Eqs. (4), the equa-

tion (7) will lack the member with the deriva-

tive of z. ®
Problem 52. The meotion of a point in plane Ozy

is described by the equations

xz = a ¢os wl, ¥y = a sin wt, (a)

where ¢ and o are constants. Determine the
. path and the equation of motion along it.
Fig. 140 Solution. Squaring the equations (a) and ad-
ding them, we obtain: a® + y? = a2,
Hence, the path is a circle of radius a with the centre at the origin
of the coordinate system (Fig. 140). Computing the derivatives of
x and y with respect to ¢, we obtain

T = —ao sin of, ¥ = ao cos ol.

Substituting into Eq. (7), we have

s= \andt or s=aot. (b)

S iy,

Equation (b) describes the particle’s motion along the path in the
form (1). Frem equations (a), when ¢ = 0, we have z = a, and y=20,
i.e., the particle is at M; as ¢ increases z decreases and ¥ increases,
assuming positive values. Consequently, the counting off of s starts
at point M, and the displacement along the circle is in the direction
indicated by the arrow in Fig. 140. It will be observed from equation
(b) that as the particle moves the displacement s increases in pro-
portion to the {ime, the increment being aw each second, such motion
is called uniform.

In this case the conversion from the natural method made for
a more graphic visualisation of the motion than could be presented
by equations (a) directly. @®

*) By taking the square root with the plus sign we thereby determine the
positive direction of the displacement s (in the direction the point starts moving
at time ¢ = 0).
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§ 61. Velocity Vector of a Particle

One of the basic kinematic characteristics of motion of a particle
is a vector guantity called velocity. First let us introduce the concept
of average velocity of a particle in a given time interval, Let a mo-
ving particle occupy at time ¢ a position M defined by the radius
vector », and at time ¢, a position M, defined by the radius vector »,
(Fig. 141). The displacement during the time interval At = ¢, — ¢
is defined by a vector MM, which we shall call the displacement vector
of the particle. The vector is directed along a chord if the particle is

Fig. 141

in curvilinear motion (Fig. 141ia), and along the path AB in rectili-
near motion (Fig. 141b).

From triangle OMM, we have » + MM, = »,, whence
MM, =r;, —r = Ar.

The ratio of the displacement vector of a particle to the correspon-
ding time interval defines a vector quantity called the average (both

magnitude and direction) velocity of the particle during the given
time interval At:

Vay =g = | (8)

Ua‘p:-:—-—ﬁT— . (8’)

Vector v,, has the same direction as vector MM,, i.e., along the
chord MM, in the direction of the motion of the particle in the case
of curvilinear motion, and along the path itself in the case of recti-

linear motion (the direction of the vector is not altered by being
divided by At).
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Obviously, the smaller the time interval A¢ = ¢, — ¢ for which
the average velocity has been calculated, the more precisely will
v,v characterise the particle’s motion. To obtain a characteristic
of motion independent of the choice of the time interval A, the con-
cept of instantaneous velocity of a particle is introduced.

The instantaneous velocity of a particle at any time ¢ is defined
as the vector quantity ¢ towards which the average velocity v,
tends when the time interval At tends to zero:

. . Ap
"= l]l‘]l (Na‘.)z—«“ llI]l '*A— .
At} st A

The limit of the ratio Ar/Afas At — 0 is the first derivative of
the vector r with respect to ¢ and is denoted, like the derivative of
a scalar function, by the symbol dr/dt®.

Finally we obtain:

"= (9)

Thus, the vector of instantaneous velocity of a particle is equal to
the first derivative of the radius vector of the particle with respect to time.

As the limiting direction of the secant MM, is a tangent, the vec-
tor of instantaneous velocity is tangent to the patli of the particle
in the direction of motion.

Eq. (9) also shows that the velocily vector # is equal to the ratio
of the infinitesimal displacement dr of the particle tangent to its
path to the corresponding time interval dt.

In rectilinear motion the velocity veelor » is always directed along
the straight line in which the particle ix moving and can change only
in magnitude; in curvilinear motion the direction of the velocily
vector changes continuously. The dimension of velocity is displa-
cement/time, and the customary units are m/s or km'h.

§ 62. Acceleration Veclor of a Particle

Acceleration characterises the time rate of change of velocity
in magnitude and direction.

Let a moving particle occupy a position M and have a velocity
v at a given time¢, and let it at time {; occupy a position M, and have
a velocity »; (Fig. 142). The increase in velocity in the time interval
At = t; —t is Av == v, — v. To construct vector Av, lay off vector

*! In general, for any variable vector # depending on an argument ¢
Au du

lim — =%

Atwg At dt



