LA
RERR R IRRS

Addison
Wesley

A1 #h s G AR
The Mythical Man-Month

x, BEEDE - HEEN,
“~" (Frederick P. Brooks Jr.)

- 20 R A R

- SRPEIF ARSI DL 53528

47 1999 443 SIS BLARIE R A
o BETEIR, A A BTG A AR i

) 1.0 4 4

www.infopower.com.

FHERE- -REIER

(x) BEBER - HEEN o EEE

(Frederick P. Brooks Jr.)

4B G &

The Mythical Man-Month: Essays on software Engineering, 2nd ed. (ISBN 0-201-83595-9)
Frederick P. Brooks, JR.

Copyright © 1995 Addison Wesley Longman, Inc,

Original English Language Edition Published by Addison Wesley longman, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA ELEC
TRIC POWER PRESS, Copyright © 2003.

ABEHNR) Pearson Education # H Ei) HIRHTED EER (B, B SITHREK
MEBBREBRS) MFHIKR. BIT.
RELHREREFY, FEUEATREPSSEEBREFAES.

AHHHENEH Pearson Education (HRAE#H HIRER) BOLDithirg, TAREE RS,
AFRTRAFEEGFREILS: EF: 01-2003-1019

For sale and distribution in the People’ s Republic of China exclusively(except Taiwan,Hong
Kong SAR and Macao SAR).

SR T HEARKMESA CAEEHEEE . RIHFIATBE AT E & SO #HERIT.

EBEMKE (CIP) B .
AH#E (%) AiBgTH & %Elut —dbi: PEEH K, 2003
(RRAER - ETERTD

ISBN 7-5083-1303-8

LA A ILKREFR-—HETE 2K —XE-—-FX IV.TP311.52
thER AR FE CIP EiEZS (2003) $ 014375 5

B E
FRAE « YGRS
ANR#E EERD
(R) REMER - BT (Frederick P. Brooks Jr.)
R E B AR
BiE: (010) 88515918 f£H: (010) 88423191
6 A ERRI
s RIS RIT AT
880<1230 1/32 B %: 105 ¥ ¥ 288 TF
ISBN 7-5083-1303-8
2003 E3 A 1K
2003 £ 5 F58 2 IRENK
5001~7000
25.00 7T

BB
® #p
bl AR 4

=

MEEE WD
FAXN S H%E

e

It D i By §-

Lm..) N S YL

Dedication of the 1975 edition

To two who especially enriched my IBM years:

Thomas |. Watson, Jr.,

whose deep concern for people still permeates his company,
and

Bob O. Evans,

whose bold leadership turned work into adventure.

Dedication of the 1995 edition

To Nancy,
God’s gift to me.

Preface to the 20th
Anniversary Edition

To my surprise and delight, The Mythical Man-Month continues
to be popular after 20 years. Over 250,000 copies are in print.
People often ask which of the opinions and recommendations
set forth in 1975 I still hold, and which have changed, and how.
Whereas I have from time to time addressed that question in lec-
tures, [have long wanted to essay it in writing.

Peter Gordon, now a Publishing Partner at Addison-Wesley,
has been working with me patiently and helpfully since 1980.
He proposed that we prepare an Anniversary Edition. We de-
cided not to revise the original, but to reprint it untouched (ex-
cept for trivial corrections) and to augment it with more current
thoughts.

Chapter 16 reprints “No Silver Bullet: Essence and Acci-
dents of Software Engineering,” a 1986 IFIPS paper that grew
out of my experience chairing a Defense Science Board study on
military software. My coauthors of that study, and our executive
secretary, Robert L. Patrick, were invaluable in bringing me
back into touch with real-world large software projects. The pa-
per was reprinted in 1987 in the IEEE Computer magazine, which
gave it wide circulation.

“No Silver Bullet” proved provocative. It predicted that a
decade would not see any programming technique that would
by itself bring an order-of-magnitude improvement in software
productivity. The decade has a year to run; my prediction seems
safe. “NSB” has stimulated more and more spirited discussion

vii

viii

Preface to the 20th Anniversary Edition

in the literature than has The Mythical Man-Month. Chapter 17,
therefore, comments on some of the published critique and up-
dates the opinions set forth in 1986.

In preparing my retrospective and update of The Mythical
Man-Month, 1 was struck by how few of the propositions as-
serted in it have been critiqued, proven, or disproven by on-
going software engineering research and experience. It proved
useful to me now to catalog those propositions in raw form,
stripped of supporting arguments and data. In hopes that these
bald statements will invite arguments and facts to prove, dis-
prove, update, or refine those propositions, I have included this
outline as Chapter 18.

Chapter 19 is the updating essay itself. The reader should
be warned that the new opinions are not nearly so well in-
formed by experience in the trenches as the original book was.
I have been at work in a university, not industry, and on smali-
scale projects, not large ones. Since 1986, I have only taught
software engineering, not done research in it at all. My research
has rather been on virtual environments and their applications.

In preparing this retrospective, I have sought the current
views of friends who are indeed at work in software engineer-
ing. For a wonderful willingness to share views, to comment
thoughtfully on drafts, and to re-educate me, I am indebted to
Barry Boehm, Ken Brooks, Dick Case, James Coggins, Tom
DeMarco, Jim McCarthy, David Parnas, Earl Wheeler, and Ed-
ward Yourdon. Fay Ward has superbly handled the technical
production of the new chapters.

I thank Gordon Bell, Bruce Buchanan, Rick Hayes-Roth, my
colleagues on the Defense Science Board Task Force on Military
Software, and, most especially, David Parnas for their insights
and stimulating ideas for, and Rebekah Bierly for technical pro-
duction of, the paper printed here as Chapter 16. Analyzing the
software problem into the categories of essence and accident was
inspired by Nancy Greenwood Brooks, who used such analysis
in a paper on Suzuki violin pedagogy.

Preface to the 20th Anniversary Edition

Addison-Wesley’s house custom did not permit me to ac-
knowledge in the preface to the 1975 edition the key roles
played by their staff. Two persons’ contributions should be es-
pecially cited: Norman Stanton, then Executive Editor, and Her-
bert Boes, then Art Director. Boes developed the elegant style,
which one reviewer especially cited: “wide margins, [and] imag-
inative use of typeface and layout.” More important, he also
made the crucial recommendation that every chapter have an
opening picture. (I had only the Tar Pit and Reims Cathedral at
the time.) Finding the pictures occasioned an extra year’s work
for me, but I am eternally grateful for the counsel.

Soli Deo gloria—To God alone be glory.

Chapel Hill, N.C. F.P. B, Jr.
March 1995

ix

Preface to the
First Edition

In many ways, managing a large computer programming proj-
ect is like managing any other large undertaking—in more ways
than most programmers believe. But in many other ways
it is different—in more ways than most professional managers
expect.

The lore of the field is accumulating. There have been sev-
eral conferences, sessions at AFIPS conferences, some books,
and papers. But it is by no means yet in shape for any systematic
textbook treatment. It seems appropriate, however, to offer this
little book, reflecting essentially a personal view.

Although I originally grew up in the programming side of
computer science, I was involved chiefly in hardware architec-
ture during the years (1956-1963) that the autonomous control
program and the high-level language compiler were developed.
When in 1964 I became manager of Operating System/360, I
found a programming world quite changed by the progress of
the previous few years.

Managing OS/360 development was a very educational ex-
perience, albeit a very frustrating one. The team, including F. M.
Trapnell who succeeded me as manager, has much to be proud
of. The system contains many excellencies in design and exe-
cution, and it has been successful in achieving widespread use.
Certain ideas, most noticeably device-independent input-output
and external library management, were technical innovations

Preface to the First Edition

now widely copied. It is now quite reliable, reasonably efficient,
and very versatile.

The effort cannot be called wholly successful, however. Any
065/360 user is quickly aware of how much better it should be.
The flaws in design and execution pervade especially the control
program, as distinguished from the language compilers. Most of
these flaws date from the 1964-65 design period and hence must
be laid to my charge. Furthermore, the product was late, it took
more memory than planned, the costs were several times the
estimate, and it did not perform very well until several releases
after the first.

After leaving IBM in 1965 to come to Chapel Hill as origi-
nally agreed when I took over OS/360, I began to analyze the
S5/360 experience to see what management and technical les-
sons were to be learned. In particular, I wanted to explain the
quite different management experiences encountered in System/
360 hardware development and OS/360 software development.
This book is a belated answer to Tom Watson’s probing ques-
tions as to why programming is hard to manage.

In this quest I have profited from long conversations with
R. P. Case, assistant manager 1964-65, and F. M. Trapnell, man-
ager 1965-68. | have compared conclusions with other managers
of jumbo programming projects, including F. J. Corbato of
M.LT., John Harr and V. Vyssotsky of Bell Telephone Labora-
tories, Charles Portman of International Computers Limited,
A. P. Ershov of the Computation Laboratory of the Siberian Di-
vision, U.5.5.R. Academy of Sciences, and A. M. Pietrasanta of
IBM.

My own conclusions are embodied in the essays that follow,
which are intended for professional programmers, professional
managers, and especially professional managers of program-
mers.

Although written as separable essays, there is a central ar-
gument contained especially in Chapters 2-7. Briefly, I believe
that large programming projects suffer management problems

xi

xii

Preface to the First Edition

different in kind from small ones, due to division of labor. 1 be-
lieve the critical need to be the preservation of the conceptual
integrity of the product itself. These chapters explore both the
difficulties of achieving this unity and methods for doing so.
The later chapters explore other aspects of software engineering
management.

The literature in this field is not abundant, but it is widely
scattered. Hence I have tried to give references that will both
illuminate particular points and guide the interested reader to
other useful works. Many friends have read the manuscript,
and some have prepared extensive helpful comments; where
these seemed valuable but did not fit the flow of the text, I have
included them in the notes.

Because this is a book of essays and not a text, all the ref-
erences and notes have been banished to the end of the volume,
and the reader is urged to ignore them on his first reading.

I am deeply indebted to Miss Sara Elizabeth Moore, Mr.
David Wagner, and Mrs. Rebecca Burris for their help in pre-
paring the manuscript, and to Professor Joseph C. Sloane for ad-
vice on illustration.

Chapel Hill, N.C. FEP.B,]r
October 1974

1
TheTar Pit

1
The Tar Pit

Een schip op het strand is een baken in zee.
[A ship on the beach is a lighthouse to the sea.]

DUTCH PROVERB

C. R. Knight, Mural of La Brea Tar Pits

The George C. Page Museum of La Brea Discoveries,
The Natural History Museum of Los Angeles County

4 The Tar Pit

No scene from prehistory is quite so vivid as that of the mortal
struggles of great beasts in the tar pits. In the mind’s eye one sees
dinosaurs, mammoths, and sabertoothed tigers struggling against
the grip of the tar. The fercer the struggle, the more entangling the
tar, and no beast is so strong or so skillful but that he ultimately
sinks.

Large-system programming has over the past decade been
such a tar pit, and many great and powerful beasts have thrashed
violently in it. Most have emerged with running systems—few
have met goals, schedules, and budgets. Large and small, massive
or wiry, team after team has become entangled in the tar. No one
thing seems to cause the difficulty—any particular paw can be
pulled away. But the accumulation of simultaneous and interact-
ing factors brings slower and slower motion. Everyone seems to
have been surprised by the stickiness of the problem, and it is hard
to discern the nature of it. But we must try to understand it if we
are to solve it.

Therefore let us begin by identifying the craft of system pro-
gramming and the joys and woes inherent in it.

The Programming Systems Product

One occasionally reads newspaper accounts of how two program-
mers in a remodeled garage have built an important program that
surpasses the best efforts of large teams. And every programmer
is prepared to believe such tales, for he knows that he could build
any program much faster than the 1000 statements/year reported
for industrial teams.

Why then have not all industrial programming teams been
replaced by dedicated garage duos? One must look at what is being
produced.

In the upper left of Fig. 1.1 is a program. Itis complete in itself,
ready to be run by the author on the system on which it was
developed. That is the thing commonly produced in garages, and

The Programming Systems Product

X3 ey

A
A Programming
Program System
(Interfaces

System Integration)

X3
Programming Programming
Product ' Systems
(Generalization, Product
Testing, .
Documentation,
Maintenance)

Fig. 1.1 Evolution of the programming systems product

that is the object the individual programmer uses in estimating
productivity.

There are two ways a program can be converted into a more
useful, but more costly, object. These two ways are represented by
the boundaries in the diagram.

Moving down across the horizontal boundary, a program
becomes a programming product. This is a program that can be run,

5

6 The Tar Pit

tested, repaired, and extended by anybody. It is usable in many
operating environments, for many sets of data. To become a gener-
ally usable programming product, a program must be written in a
generalized fashion. In particular the range and form of inputs
must be generalized as much as the basic algorithm will reasonably
allow. Then the program must be thoroughly tested, so that it can
be depended upon. This means that a substantial bank of test
cases, exploring the input range and probing its boundaries, must
be prepared, run, and recorded. Finally, promotion of a program
to a programming product requires its thorough documentation, so
that anyone may use it, fix it, and extend it. As a rule of thumb,
[estimate that a programming product costs at least three times as
much as a debugged program with the same function.

Moving across the vertical boundary, a program becomes a
component in a programming system. This is a collection of interact-
ing programs, coordinated in function and disciplined in format,
so that the assemblage constitutes an entire facility for large tasks.
To become a programming system component, a program must be
written so that every input and output conforms in syntax and
semantics with precisely defined interfaces. The program must
also be designed so that it uses only a prescribed budget of re-
sources—memory space, input-output devices, computer time. Fi-
nally, the program must be tested with other system components,
in all expected combinations. This testing must be extensive, for
the number of cases grows combinatorially. It is time-consuming,
for subtle bugs arise from unexpected interactions of debugged
components. A programming system component costs at least
three times as much as a stand-alone program of the same func-
tion. The cost may be greater if the system has many components.

In the lower right-hand corner of Fig. 1.1 stands the program-
ming systems product. This differs from the simple program in all of
the above ways. It costs nine times as much. But it is the truly
useful object, the intended product of most system programming
efforts.

' * _ The Joys of the Craft 7

The Joys of the Craft

Why is programming fun? What delights may its practitioner
expect as his reward?

First is the sheer joy of making things. As the child delights
in his mud pie, so the adult enjoys building things, especially
things of his own design. | think this delight must be an image of
God’s delight in making things, a delight shown in the distinctness
and newness of each leaf and each snowflake.

Second is the pleasure of making things that are useful to
other people. Deep within, we want others to use our work and
to find it helpful. In this respect the programming system is not
essentially different from the child’s first clay pencil holder “for
Daddy’s office.”

Third is the fascination of fashioning complex puzzle-like
objects of interlocking moving parts and watching them work in
subtle cycles, playing out the consequences of principles built in
from the beginning. The programmed computer has all the fasci-
nation of the pinball machine or the jukebox mechanism, carried
to the ultimate.

Fourth is the joy of always learning, which springs from the
nonrepeating nature of the task. In one way or another the prob-
lem is ever new, and its solver learns something: sometimes practi-
cal, sometimes theoretical, and sometimes both.

Finally, there is the delight of working in such a tractable
medium. The programmer, like the poet, works only slightly re-
moved from pure thought-stuff. He builds his castles in the air,
from air, creating by exertion of the imagination. Few media of
creation are so flexible, so easy to polish and rework, so readily
capable of realizing grand conceptual structures. (As we shall see
later, this very tractability has its own problems.)

Yet the program construct, unlike the poet’s words, is real in
the sense that it moves and works, producing visible outputs sepa-
rate from the construct itself. It prints results, draws pictures,
produces sounds, moves arms. The magic of myth and legend has

