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PREFACE-

Transform methods provide a unifying mathematical approach to the study of
electrical networks, devices for energy conversion and control, antennas, and other
components of electrical systems, as well as to complete linear systems and to
many other physical systems and devices, whether electrical or not. These same
methods apply equally to the subjects of electrical communication by wire or op-
tical fiber, to wireless radio propagation, and to ionized media—which are all con-
cerned with the interconnection of electrical systems—and to information theory
which, among other things, relates to the acquisition, processing, and presenta-
tion of data. Other theoretical techniques are used in handling these basic fields
of electrical engineering, but transform methods are virtually indispensable in all
of them. Fourier analysis as applied to electrical engineering is sufficiently im-
portant to have earned a permanent place in the curriculum—indeed much of the
mathematical development took place in connection with alternating current the-
ory, signal analysis, and information theory as formulated in connection with elec-
trical communication.

This is why much of the literature dealing with technical applications has ap-
peared in electrical and electronic journals. Despite the strong bonds with elec-
trical engineering, Fourier analysis nevertheless has become indispensable in bio-
medicine and remote sensing (geophysics, oceanography, planetary surfaces, civil
engineering), where practitioners now outnumber those electrical engineers who
regularly use Fourier analysis. But the teaching of Fourier analysis and its appli-
cations still finds its home in electrical engineering.

A course on transforms and their applications has formed part of the electri-
cal engineering curriculum at Stanford University for many years and has been
given with no prerequisites beyond those that the holder of a bachelot’s degree
normally possesses. One objective has been to develop a pivotal course to be taken
at an early stage by all graduates, so that in later, more specialized courses, the
student would be spared encountering the same material over and over again;
later instructors can then proceed more directly to their special subject matter.

It is clearly not feasible to give the whole of linear mathematics in a single
course; the choice of core material must necessarily remain a matter of local judg-
ment. The choice will, however, be of most help to later instructors if sharply de-
fined.

An early-level course should be simple, but not trivial; the objective of this
book is to simplify the presentation of many key topics that are ordinarily dealt

Xv



Xy Preface

with in advanced contexts, by making use of suitable notation and an approach
through convolution.

One way of working from the book is to begin by taking the chapters in nu-
merical order. This sequence is feasible for students who could read the first half
unassisted or who could be taken through it rapidly in a few lectures; but if the
material is approached at a more normal pace, then, as a practical matter, itis a
good idea to interpret each theorem and concept in terms of a physical example.
Waveforms and their spectra and elementary diffraction theory are suitable. Af-
ter that, the chapters on applications can then be selected in whatever sequence
is desired. The organization of chapters is as follows:

1. Introduction 9. Waveforms, Spectra, . ..

d 10. Sampling and Series

2. Groundwork — Choices 11. Discrete FT and FFT

{ 12. Hartley Transform

3. Convolution 13. Relatives —> 14. Laplace

l

i‘ Notation ... . 15. Antennas and Optics
.y 19. Dynamic Spectra

i. The Impulse Symbol ~ ¢— Applications —{1 6. Statistics — 17. Noise

6. The Basic Theorems 18. Heat and sion

l

7. Obtaining Transf 20. Tables of sing, . . .
- Dptaiiing Sranslorms 21. Solutions to Problems
N’ ¢— Reference

o 22. Pictorial Dictionary
8. The Two Domains — 23. Biography of Fourier

The amount of material is suitable for one semester, or for one quarter, ac-
cording to how many of the later chapters on applications are included. A practi-
cal plan is to leave the choice of chapters on applications to the current instructor.

Many fine mathematical texts on the Fourier transform have been published.
This book differs in that it is intended for those who are concerned with apply-
ing Fourier transforms to physical situations rather than with pursuing the math-
ematical subject as such. The connections of the Fourier transform with other
transforms are also explored, and the text has been purposely enriched with con-
densed information that will suit it for use as a reference source for transform
pairs and theorems pertaining to transforms.

My interest in the subject was fired while studying analysis from H. S.
Carslaw’s “Fourier Series and Integrals” at the University of Sydney in 1939, 1
learned about physical applications as a colleague of J. C. Jaeger at CS.LR Ra-
diophysics Laboratory and inherited the physical wisdom of the crystallographers
of the Cavendish Laboratory, Cambridge, as transmitted by J. A. Ratcliffe. Trans-
form methods are at the heart of the electrical engineering curriculum. Digital
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computing and data processing, which have emerged as large curricular segments,
though rather different in content from the rigorous study of circuits, electronics,
and waves, nevertheless do share a common bond through the Fourier transform.
The diffusion equation, which long ago had a connection with submarine cable
telegraphy, has reemerged as an essential consideration in solid state physics and
devices, both through the practice of doping, by which semiconductor devices are
fabricated, and as a controlling influence in electrical conduction by holes and
electrons. Needless to say, a grasp of Fourier fundamentals is an asset in the solid-
state laboratory.

The explosion of image engineering, much of which can be interpreted via
two-dimensional generalization, has reinforced the value of a core course. Con-
sequently, the subject matter of this book has easily moved into the pivotal role
foreseen for it, and faculty members from various specialties have found them-
selves comfortable teaching it. The course is taken by first-year graduate students,
especially students arriving from other universities, and by students from other
departments, notably applied physics and earth sciences. The course is accessible
to students in the last year of their bachelor’s degree.

Introduction of the fast Fourier transform (FFT) algorithm has greatly broad-
ened the scope of application of the Fourier transform to data handling and to
digital formulation in general and has brought prominence to the discrete Fourier
transform (DFT). The technological revolution associated with discrete mathe-
matics as treated in Chapter 11 has made an understanding of Fourier notions
(such as aliasing, which only aficionados used to guard against) indispensable to
any professional who handles masses of data, not only engineers but experts in
many subfields of medicine, biology, and remote sensing. Developments based
on Ralph V. L. Hartley's equations (Chapter 12) have made it possible to dispense
with imaginaries in computed Fourier analysis and to proceed elegantly and sim-
ply using the real Hartley formalism.

Hartley’s equations, which quietly received honorable mention in the first edi-
tion of this book, gained major relevance to signal processing as computers flour-
ished. In 1983 I gave them new life in a time-series context with modern notation
under the title of discrete Hartley transform, a name that is now universally rec-
ognized, while Z. Wang (Appl. Math. and Comput., vol. 9, pp. 53-73, 153-163,
245-255, 1983) independently stimulated mathematicians. Hartley’s cas (cosine
and sine) function is now widely recognized.

For those who like to do their own computer programming some segments
of pseudocode have been supplied. Translating into your language of choice may
give some insights that complement the algebraic and graphical viewpoints. Fur-
thermore, executing numerical examples develops a useful sort of intuition which,
while not as powerful as physical intuition, adds a further dimension to one’s ex-
perience. Pseudocode is suited to readers who cannot be expected to know sev-
eral popular languages. The aim is to provide the simplest intelligible instructions
that are susceptible to simultaneous transcription into the language of fluency of
the reader, who provides the necessary protocol, array declarations, and other dis-
tinctive features.
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The code segments in this book are presented to supplement verbal explana-
tion, not to be a substitute for a computational toolbox.

However, it is often more important to be able to use a computer algorithm
than to understand in detail how it was constructed, just as when using a table
of integrals-or an engineering design handbook. To meet this need and to bring
the power of Fourier transformation into the hands of a much wider constituency,
packages of software tools have been created commercially and have become in-
dispensable. A popular example is MATLAB®, a user-friendly, higher-level,
special-purpose application whose use is illustrated in Chapters 7 and 11.

Caution is needed in circumstances where the user is shielded from the al-
gorithmic details; it is handy to know what to expect before being presented with
computer output. For this and other reasons, transforms presented graphically in
the Pictorial Dictionary have proved to be a useful reference feature. Graphical
presentation is a useful adjunct to the published compilations of integral trans-
forms, where it is sometimes frustrating to seek commonly needed entries among
the profusion of rare cases and where, in addition, simple functions that are im-
pulsive, discontinuous, or defined piecewise may be hard to recognize or may not
be included at all.

A good problem assigned at the right stage can be extremely valuable for the
student, but a good problem is hard to compose. Many of the problems here go
beyond mathematical exercises by inclusion of technical background or by ask-
ing for opinions. Those wishing to mine the good material in the problems will
appreciate that many of them are now titled, a practice that should be more widely
adopted. Many of the problems are discussed in Chapter 21, but occasionally it
is nice to have a new topic followed by an exercise that is in close proximity rather
than at the end of the chapter; a sprinkling of these is provided.

Notation is a vital adjunct to thinking, and I am happy to report that the sinc
function, which we learned from P. M. Woodward, is alive and well, and surviv-
ing erosion by occasional authors who do not know that “sine x over x” is not the
sinc function. The unit rectangle function (unit height and width) I1(x), the trans-
form of the sinc function, has also proved extremely useful, especially for black-
board work. In typescript or other media where the Greek letter is less desirable,
T1(x) may be written “rect x,” and it is convenient in any case to pronounce it rect.
The jinc function, the circular analogue of the sinc function, has the correspond-
ing virtues of normalization and the distinction of describing the diffraction field
of a telescope or camera. The shah function IlI(x) has caught on. It is easy to print
and is twice as useful as you might think because it is its own transform. The as-
terisk for convolution, which was in use a long time ago by Volterra and perhaps
earlier, is now in wide use and I recommend ** to denote two-dimensional con-
volution, which has become common as a result of the explosive growth of im-
age processing.

Early emphasis on digital convolution in a text on the Fourier transform
turned out to be exactly the way to start. Convolution has changed in a few years
from being presented as a rather advanced concept to one that can be easily ex-
plained at an early stage, as is fitting for an operation that applies to all those sys-
tems that respond sinusoidally when you shake them sinusoidally.
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