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Preface to the First Edition

This book is an introduction, on the undergraduate level, to the classical and
contemporary theory of computation. The topics covered are, in a few words,
the theory of automata and formal languages, computability by Turing machines
and recursive functions, uncomputability, computational complexity, and math-
ematical logic. The treatment is mathematical but the viewpoint is that of com-
puter science; thus the chapter on context-free languages includes a discussion
of parsing, and the chapters on logic establish the soundness and completeness
of resolution theorem-proving.

In the undergraduate curriculum, exposure to this subject tends to come
late, if at all, and collaterally with courses on the design and analysis of al-
gorithms. It is our view that computer science students should be exposed to
this material earlier —as sophomores or juniors-—— both because of the deeper
insights it yields on specific topics in computer science, and because it serves to
establish essential mathematical paradigms. But we have found teaching to a
rigorous undergraduate course on the subject a difficult undertaking because of
the mathematical maturity assumed by the more advanced textbooks. Qur goal
in writing this book has been to make the essentials of the subject accessible
to a broad undergraduate audience in a way that is mathematically sound but
presupposes no special mathematical experience.

The whole book represents about a year’s worth of coursework. We have
each taught a one-term course covering much of the material in Chapters 1
through 6, omitting on various occasions and in various combinations the sec-
tions of parsing, on recursive functions, and on particular unsolvable decision
problems. Other selections are possible; for example, a course emphasizing com-
putability and the foundations of mechanical logic might skip quickly over Chap-
ters 1 through 3 and concentrate on Chapters 4, 6, 8, and 9. However, it is used,
our fervent hope is that the book will contribute to the intellectual development
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of the next generation of computer scientists by introducing them at an early
stage~of their education to crisp and methodical thinking about computational
problems.

We take this opportunity to thank all from whom we have learned, both
teachers and students. Specific thanks go to Larry Denenberg and Aaron Temin
for their proofreading of early drafts, and to Michael Kahl and Oded Shmueli
for their assistance and advice as teaching assistants. In the spring of 1980 Al-
bert Meyer taught a course at M.I.'T. from a draft of this book, and we thank
him warmly for his criticisms and corrections. Of course, the blame for any re-
maining errors rests with us alone. Renate D’Arcangelo typed and illustrated the
manuscript with her characteristic but extraordinary perfectionism and rapidity.



Preface to the Second Edition

Much has changed in the fifteen years since the Elements of the Theory of Com-
putation first appeared —and much has remained the same. Computer science
is now a much more mature and established discipline, playing a réle of ever in-
creasing importance in a world of ubiquitous computing, globalized information,
and galloping complexity —more reasons to keep in touch with its foundations.
The authors of the Elements are now themselves much more mature and busy
—that is why this second edition has been so long in coming. We undertook
it because we felt that a few things could be said better, a few made simpler

—-gsome even omitted altogether. More unportantly, we wanted the book to
reflect how the theory of computation, and its students, have evolved during
these years. Although the theory of computation is now taught more widely
in absolute terms, its relative position within the computer science curriculum,
for example vis & vis the subject of algorithms, has not been strengthened. In
fact, the field of the design and analysis of algorithms is now so mature, that
its elementary principles are arguably a part of a basic course on the theory
of computation. Besides, undergraduates today, with their extensive and early
computational experience, are much morc aware of the applications of automata
in compilers, for example, and more suspicious when simple models such as the
Turing machine are presented as general computers. Evidently, the treatment
of these subjects needs some updating. :

Concretely, these are the major differences from the first edition:

o Rudiments of the design and analysis of algorithms are introduced infor-
mally already in Chapter 1 (in connection with closures), and algorith-
mic questions are pursued throughout the book. There are sections on
algorithmic problems in connection with finite automata and context-free
grammars in Chapters 2 and 3 (including state minimization and context-
free recognition), algorithms for easy variants of A'P-complete problems,
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and a section that reviews algorithmic techniques for “coping with N'P-
completeness” (special case algorithms, approximation algorithms, back-
tracking and branch-and-bound, local improvement, and simulated anneal-
ing algorithms).

o The treatment of Turing machines in Chapter 4 is more informal, and the
simulation arguments are simpler and more quantitative. A random access
Turing machine is introduced, helping bridge the gap between the clum-
siness of Turing machines and the power of computers and programming
languages.

o We included in Chapter 5 on undecidability some recursive function the-
ory (up to Rice’s Theorem). Grammars and recursive numerical functions
are introduced and proved equivalent to Turing machines earlier, and the
proofs are simpler. The undecidability of problems related to context-free
grammars is proved by a simple and direct argument, without recourse to
the Post correspondence problem. We kept the tiling problem, which we
revisit in the A'P-completeness chapter.

o Complexity is done in a rather novel way: In Chapter 6, we define no other
time bounds besides the polynomial ones —thus P is the first complexity
class and concept encountered. Diagonalization then shows that there are
exponential problems not in P. Real-life problems are introduced side-by-
side with their language representations (a distinction that is deliberately
blurred), and their algorithmic questions are examined extensively.

o There is a separate N'P-completeness chapter with a new, extensive, and,
we think, pedagogically helpful suite of A'P-completeness reductions, cul-
minating with the equivalence problem for regular expressions —closing
a full circle to the first subject of the book. As mentioned above, the
book ends with a section on algorithmic techniques for “coping with A/P-
completeness.”

o There are no logic chapters in the new edition. This was a difficult decision,
made for two reasons: According to all evidence, these were the least read
and taught chapters of the book; and there are now books that treat this
subject better. However, there is extensive treatment of Boolean logic and
its satisfiability problems in Chapter 6.

o Overall, proofs and exposition have been simplified and made more informal
at some key points. In several occasions, as in the proof of the equivalence
of context-free languages and pushdown automata, long technical proofs of
inductive statements have become exercises. There are problems following
each section.

As a result of these changes, there is now at least one more way of teaching out
of the material of this book (besides the ones outlined in the first edition, and
the ones that emerged from its use): A semester-length course aiming at the
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coverage of the basics of both the theory of computation and algerithms may be
based on a selection of material from Chapters 2 through 7.

‘We want to express our sincere thanks to all of our students and colleagues
who provided feedback, ideas, errors, and corrections during these fifteen years—
it is impossible to come up with a complete list. Special thanks to Martha Sideri
for her help with the revision of Chapter 3. Also, many thanks to our editor,
Alan Apt, and the people at Prentice-Hall ---Barbara Kraemer, Sondra Chavez,
and Bayani de Leon-— who have been so patient and helpful.

Finally, we would appreciate receiving error reports or other comments,
preferably by electronic mail to the address elements@cs.berkeley.edu. Con-
firmed errors, corrections, and other information about the book can also be
obtained by writing to this address.
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Introduction

Look around you. Computation happens everywhere, all the time, initiated by
everybody, and affecting us all. Computation can happen because computer
scientists over the past decades have discovered sophisticated methods for man-
aging computer resources, enabling communication, translating programs, de-
signing chips and databases, creating computers and programs that are faster,
cheaper, easier to use, more secure.

As it is usually the case with all major disciplines, the practlcal successes
of computer science build on its elegant and solid foundations. At the basis
of physical sciences lie fundamental questions such as what is the nature of
matter? and what is the basis and origin of organic life? Computer science
has its own set of fundamental questions: What is an algorithm? What can and
what cannot be computed? When should an algorithm be considered practically
feasible? For more than sixty years (starting even before the advent of the
eiectronic computer) computer scientists have been pondering these questions,
and coming up with ingenious answers that have deeply influenced computer
science.

The purpose of this book is to introduce you to these fundamental ideas,
models, and results that permeate computer science, the basic paradigms of our
field. They are worth studying, for many reasons. First, much of modern com-
puter science is based more or less explicitly on them —and much of the rest
should. .. Also, these ideas and models are powerful and beautiful, excellent
examples of mathematical modeling that is elegant, productive, and of lasting
value. Besides, they are so much a part of the history and the “collective sub-
conscious” of our field, that it is hard to understand computer science without
first being exposed to them.

It probably comes as no surprise that these ideas and models are mathemat-
ical in nature. Although a computer is undeniably a physical object, it is also

1



2 Introduction

true that very little that is useful can be said of its physical aspects, such as its
molecules and its shape; the most useful abstractions of a computer are clearly
mathematical, and so the techniques needed to argue about them are necessarily
likewise. Besides, practical computational tasks require the ironclad guarantees
that only mathematics provides (we want our compilers to translate correctly,
our application programs to eventually terminate, and so on). However, the
mathematics employed in the theory of computation is rather different from the
mathematics used in other applied disciplines. It is generally discrete, in that
the emphasis is not on real numbers and continuous variables, but on finite sets
and sequences. It is based on very few and elementary concepts, and draws its
power and depth from the careful, patient, extensive, layer-by-layer manipula-
tion of these concepts —just like the computer. In the first chapter you will
be reminded of these elementary concepts and techniques (sets, relations, and
induction, among others), and you will be introduced to the style in which they
are used in the theory of computation.

The next two chapters, Chapters 2 and 3, describe certain restricted mod-
els of computation capable of performing very specialized string manipulation
tasks, such as telling whether a given string, say the word punk, appears in a
given text, such as the collective works of Shakespeare; or for testing whether
a given string of parentheses is properly balanced —like () and (())(), but not
)(). These restricted computational devices (called finite-state autemata and
pushdown automata, respectively) actually come up in practice as very useful
and highly optimized components of more general systems such as circuits and
compilers. Here they provide fine warm-up exercises in our quest for a formal,
general definition of an algorithm. Furthermore, it is instructive to see how the
power of these devices waxes and wanes (or, more often, is preserved) with the
addition or removal of various features, most notably of nondeterminism, an in-
triguing aspect of computation which is as central as it is (quite paradoxically)
unrealistic.

In Chapter 4 we study general models of algorithms, of which the most ba-
sic is the Turing machine, a rather simple extension of the string-manipulating
devices of Chapters 2 and 3 which turns out to be, surprisingly, a general frame-

t Named after Alan M. Turing (1912-1954), the brilliant English mathematician
and philosopher whose seminal paper in 1936 marked the beginning of the theory
of computation (and whose image, very appropriately, adorns the cover of this
book). Turing also pioneered the fields of artificial intelligence and chess-playing
by computer, as well as that of morphogenesis in biology, and was instrumental
in breaking Enigma, the German naval code during World War II. For more on
his fascinating life and times (and on his tragic end in the hands of official cruelty
and bigotry) see the book Alan Turing: The Enigma, by Andrew Hodges, New
York: Simon Schuster, 1983.
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work for describing arbitrary algorithms. In order to argue this point, known as
the Church-Turing thesis, we introduce more and more elaborate models of com-
putation (more powerful variants of the Turing machine, even a rendom access
Turing machine and recursive definitions of numerical functions), and show that
they are all precisely equivalent in power to the basic Turing machine model.

The following chapter deals with undecidability, the surprising property of
‘certain natural and well-defined computational tasks to lie provably beyond the
reach of algorithmic solution. For example, suppose that you are asked whether
we can use tiles from a given finite list of basic shapes to tile the whole plane.
If the set of shapes contains a square, or even any triangle, then the answer
is obviously “yes.” But what if it consists of a few bizarre shapes, or if some
of the shapes are mandatory, that is, they must be used at least once for the
tiling to qualify? This is surely the kind of complicated question that you would
like to have answered by a machine. In Chapter 5 we use the formalism of
Turing machines to prove that this and many other problems cannot be solved
by computers at all.

Even when a computational task is amenable to solution by some algorithm,
it may be the case that there is no reasonably fast, practically feasible algorithm
that solves it. In the last two chapters of this book we show how real-life com-
putational problems can be categorized in terms of their complezity: Certain
problems can be solved within reasonable, polynomial time bounds, whercas
others seem to require amounts of time that grow astronomically, exponentially.
In Chapter 7 we identify a class of common, practical, and notoriously difficult
problems that are called N'P-complete (the traveling salesman problem is_only
one of them). We establish that all these problems are equivalent in that, if one
of them has an efficient algorithm, then all of them do. It is widely believed that
all A’P-complete problems are of inherently exponential complexity; whether
this conjecture is actually true is the famous P # NP problem, one of the most
important and deep problems facing mathematicians and computer scientists
today.

This book is very much about algorithms and their formal foundations.
However, as you are perhaps aware, the subject of algorithms, their analysis
and their design, is considered in today’s computer science curriculum quite
separate from that of the theory of computation. In the present edition of this
book we have tried to restore some of the unity of the subject. As a result,
this book also provides a decent, if somewhat specialized and unconventional,
introduction to the subject of algorithms. Algorithms and their analysis are
introduced informally in Chapter 1, and are picked up again and again in the
context of the restricted models of computation studied in Chapters 2 and 3,
and of the natural computational problems that they spawn. This way, when
general models of algorithms are sought later, the reader is in a better position
to appreciate the scope of the quest, and to judge its success. Algorithms play a
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major role in our exposition of complexity as well, because there is no better way
to appreciate a complex problem than to contrast it with another, amenable to
an efficient algoritAim. The last chapter culminates in a section on coping with
NP-completeness, where we present an array of algorithmic techniques that
have been successfully used in attacking A"P-complete problems (approximation
algorithms, exhaustive algorithms, local search heuristics, and so on).

Computation is essential, powerful, beautiful, challenging, ever-expanding
—and so is its theory. This book only tells the beginning of an exciting story.
It is a modest introduction to a few basic and carefully selected topics from the
treasure chest of the theory of computation. We hope that it will motivate its
readers to seek out more; the references at the end of each chapter point to good
places to start.



Sets, Relations, and Languages

1.1 SETS

They say that mathematics is the language of science —it is certainly the lan-
guage of the theory of computation, the scientific discipline we shall be studying
in this book. And the language of mathematics deals with sets, and the com-
plex ways in which they overlap, intersect, and in fact take part themselves in
forming new sets.

A set is a collection of objects. For example, the collection of the four letters
a, b, ¢, and d is a set, which we may name L; we write L = {a,b,c,d}. The
objects comprising a set are called its elements or members. For example, b
is an element of the set L; in symbols, b € L. Sometimes we simply say that b
is in L, or that L contains . On the other hand, z"is not an element of L, and
we write z ¢ L.

In a set we do not distinguish repetitions of the elements. Thus the set
{red, blue, red} is the same set as {red, blue}. Similarly, the order of the elements
is immaterial; for example, {3, 1,9}, {9,3,1}, and {1, 3,9} are the same set. To
summarize: Two sets are equal (that is, the same) if and only if they have the
same elements.

The elements of a set need not be related in any way (other than happening
to be all members of the same set); for example, {3, red, {d, blue}} is a set with
three elements, one of which is itself a set. A set may have only one element;
it is then called a singleton. For example, {1} is the set with 1 as its only
element; thus {1} and 1 are quite different. There is also a set with no element
at all. Naturally, there can be only one such set: it is called the empty set, and
is denoted by §. Any set other than the empty set is said to be nonempty.

So far we have specified sets by simply listing all their elements, separated .
by commas and included in braces. Some sets cannot be written in this way,

5



6 : Chapter 1: SETS, RELATIONS, AND LANGUAGES

because they are infinite. For example, the set N of natural numbers is infinite;
we may suggest its elements by writing N = {0,1,2,...}, using the three dots
and your intuition in place of an infinitely long list. A set that is not infinite is
finite.

Another way to specify a set is by referring to other sets and to properties
that elements may or may not have. Thus if I = {1,3,9} and G = {3,9}, G
may be described as the set of elements of I that are greater than 2. We write
this fact as follows.

G = {z:z €I and z is greater than 2}.

In general, if a set A has been defined and P is a property that elements of A
may or may not have, then we can define a new set

B = {z:z € A and z has property P}.
As another example, the set of odd natural numbers is
O = {z:z € N and z is not divisible by 2}.

A set A is a subset of a set B --in symbols, A C B if each element of
A is also an element of B. Thus O C N, since each odd natural number is a
natural number. Note that any set is a subset of itself. If 4 is a subset of B
but A is not the same as B, we say that A is a proper subset of B and write
4 C B. Also note that the empty set is a subset of every set. For if B is any set,
then § C B, since each element of § (of which there are none) is also an element
of B.

' To prove that two sets A4 and B are equal, we may prove that A C B and
B C A. Every element of 4 must then be an element of B and vice versa, so
that 4 and B have the same elements and A = B,

Two sets can be combined to form a third by various set operations, just
as numbers are combined by arithmetic operations such as addition. One set
operation is union: the union of two sets is that set having as elements the
objects that are elements of at least one of the two given sets, and possibly of
both. We use the symbol U to denote union, so that

AUB={z:x€ Aorz € B}.

For example,
{1,3,9} U {3,5,7} = {1,3,5,7,9}.

The intersection of two sets is the collection of all elements the two sets
have in common; that is,

ANB={z:x€ Aandre€ B}



