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PREFACE

Signal processing has always played a critical role in the research and development
of wireless communication systems. As the demand for high capacity and high
reliability systems increases, signal processing has an even more important role
to play. This two-volume book, comprising chapters written by leading experts,
provides an easy access to recent and important research findings in this area.

The first volume of this book focuses on channel estimation and equalization.
Since the physical environment surrounding the propagation path of a radio signal is
generally difficult to control, the channel characteristics in wireless communications
are often time varying. This time-varying naturc is 2 major obstacle to increasing
the capacity and reliability of wireless communication systems. Fast real-time chan-
nel estimation and equalization are essential. The traditional techniques for channel
estimation and equalization use training data, which not only consumes a signifi-
cant portion of available bandwidth but also requires a perfect cooperation between
the transmitter and receiver. In recent years, the so-called blind techniques have
been explored intensively in the literature. The blind techniques do not use any
training data except for certain prior information inherent in the original strings of
symbols, which hence saves the bandwidth and relaxes the relationship between the
transmitter and receiver. Consequently, the blind techniques have a clear potential
to increase the capacity and reliability of wireless systems. As a subject area, the
blind techniques have had in recent years a very fast growing rate in the general
field of signal processing for communications. For this reason, the first volume of
this book is devoted to the blind (or semi-blind) techniques.

The volume begins with a chapter by Tugnait on higher-order statistics meth-
ods. The higher-order statistics approach is among the earliest blind approaches
and has a relatively long history. The second chapter by Stoica and Ng derives
the Cramer-Rao bound for blind channel estimation problems. In the blind con-
text, the estimated channel response is ambiguous up to (at least) a scalar. The
traditional Cramer-Rao bound on estimation variance is generalized in this chap-
ter. The third chapter by Loubaton, Moulines and Regalia introduces a versatile
approach known as the subspace approach. The subspace approach often provides
a good trade-off between computation and accuracy. The fourth chapter by Hua

xi



xii Preface

on blind identification of multiple input-multiple output (MIMQ) channels driven
by colored signals presents one of the latest advances in the theory of channel es-
timation. This theory is readily applicable to wireless communications (interfaces)
between human and “smart” microphones, where the voice signals are naturally col-
ored. The fifth chapter by Kristensson and Ottersten addresses the optimization of
subspace based methods. The results shown prove that the statistical performance
of this class of methods can be enhanced by careful design. The sixth chapter by
Ding on linear prediction introduces a number of ways to exploit the whiteness of
spectrum spread signals. This exploitation significantly increases the robustness
of estimation as long as the whiteness is present. The seventh chapter by Car-
valho and Slock on semi-blind methods explores the compromise between a fully
trained system and a fully blind system. The highest capacity of a wireless system
may be achievable via a semi-blind method. The eighth chapter by Tong, Gu and
Kung on the geometrical approach provides a new look at some of the classical
techniques for symbol estimation. The ninth chapter by Scaglione, Giannakis and
Barbarossa on linear precoding is a tutorial presentation of this relatively new con-
cept. Linear precoding is a versatile coding approach to combat signal distortions
by unknown channeis. The tenth chapter by Manton and Hua on blind channel
identifiability with an arbitrary linear precoder explores in depth the implications
of linear precoding by making extensive use of abstract algebra. The final chapter
by Casas, Endres, Touzni, Johnson and Treichler on decision feedback equalization
brings the reader back to a classic equalization approach for which there is a rich
body of theory and applications. This “feedback” will ensure continued renewal,
cross-fertilization and further development of many useful concepts and techniques
for wireless communications.

On a closing note, the co-editors wish to thank all the contributors to this fine
collection, as well as their students, mentors and collaborators that introduced them
and continue to spark their interest in signal processing and communications-related
research. The first author wishes to extend special thanks to his graduate student
and co-author Zhengdao Wang for his extra help with the typesetting and compiling
of all the chapters in both volumes.

G. B. Giannakis, Y. Hua, P. Stoica and L. Tong
May 2000
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Chapter 1

CHANNEL ESTIMATION
AND EQUALIZATION
USING HIGHER-ORDER
STATISTICS

Jitendra K. Tugnait

Department of Electrical & Computer Engineering
Auburn University
Auburn, Alabama 36849, USA

1.1 Introduction

Two major sources of impairments of digital communications signals as they prop-
agate through channels are multipaths and limited bandwidth. This leads to in-
tersymbol interference (ISI) at the receiver which, in turn, may lead to high error
rates in symbol detection. Equalizers are designed to compensate for these chan-
nel distortions. One may directly design an equalizer given the received signal, or
one may first estimate the channel impulse response and then design an equalizer
based on the estimated channel. The received signals are sampled at the baud
(symbol) or higher (fractional) rate before processing them for channel estimation
and/or equalization. Depending upon the sampling rate, one has either a single-
input/single-output (SISO) (baud rate sampling), or a single-input/multiple-output
(SIMO) (fractional sampling), complex discrete-time equivalent baseband channel in
the single user case, and multiple-input/multiple-output (MIMO), complex discrete-
time equivalent baseband channel in the muiti-user case.



Channel Estimation And Equalization Using
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A training sequence (known to the receiver) may be transmitted during start-
up (acquisition mode). In the operational stage. the receivers typically switch to
a decision-directed mode where the previously equalized and detected symbols are
used as a (pseudo-)training sequence together with the received data to update the
channel or the equalizer coefficients. The various issues involved and the trade-
offs among various competing approaches (linear, decision-feedback, maximum-
likelihood sequence estimation, least mean-square vs. recursive least-squares, baud
rate vs. fractional rate, etc.) are fairly well-undersiood and documented; see the
well-known text [12} and references therein. More recently, there has been much
interest in blind (self-recovering) channel estimation and blind equalization where
no training sequences are available or used. In multipoint networks, whenever a
channe) from the master to one of the tributary stations goes down, it is clearly
not feasible (or desirable) for the master to start sending a training sequence to
reboot a particular line. In digital communications over fading/multipath channels,
a restart is required following a temporary path loss due to a severe fade. In in-
service transmission impairment monitoring, the training sequences are obviously
not supplied by the transmitter.

As in the trained case, various approaches to blind channel estimation and equal-
ization have been developed. When sampled at the baud rate, the received signal
is discrete-time stationary and typically nonminimum-phase. When sampled at
higher than baud rate (typically an integer muitiple of baud rate), the signal is
discrete-time scalar cyclostationary and equivalently, it may be-represented as a
discrete-time vector stationary sequence with an underlying STMO model. With
baud rate sampling, one has to exploit the higher-order statistics of the received
signal either implicitly (as in [5] and [18] where direct design of equalizers is con-
sidered) or explicitly (as in (3], (6], [10], [11], [21] and [25]-[29] where the focus is
on first estimating the channel impulse response using higher-order cumulants of
the received signal). Higher-order statistics provide an incomplete characterization
of the underlying non-Gaussian process. Joint channel and data estimation using
maximum-likelihood and related approaches may be found in [9], [17] and references
therein where a complete (non-Gaussian) probabilistic characterization of the signal
is exploited. Computational complexity of these ‘algorithms (explicit higher-order
statistics and joini channel-data estimation) is large when the ISI spans many sym-
bols (as in telephone channels) but they are relatively simple when ISI span is short
(as n mobile radio channels). However, they may suffer from local convergence
problems.

When there is excess channel bandwidth, baud rate sampling is below the
Nyquist rate leading to aliasing and depending upon the symbol t{iming phase,
in certain cases, causing deep spectral notches in sampled, aliased channel trans-
fer function [4]. This renders the equalizer performance quite sensitive to symbol
timing errors. Initially, in the trained case, fractional sampling was investigated
to robustify the equalizer performance against timing error. More recently, in the
blind context, it was discovered (see [24] and references therein} that oversampling
provides some new information regarding the channel, which can be exploited for



Section 1.1. Introduction 3

blind channel estimation and equalization as long as some technical conditions are
satisfied (the notorious “no common subchannel zeros” condition, also called chan-
nel disparity, for the underlying equivalent SIMQ model}. A similar SIMO model
results if multiple sensors are used with or without fractional sampling. The work
of [24] has spawned intense research activity in the use of second-order statistics for
blind identification and equalization. It should be noted that the requisite technical
conditions for applicability of these approaches are not always satisfied in practice;
some examples are in [26].

In this chapter, we discuss higher-order statistics based approaches to blind
channel estimation and equalization, with focus on estimation of the channel impulse
response, for both single-user as well as multi-user systems, and both baud-rate
as well as fractional-rate sampling. We consider a baseband equivalent discrete-
time model with finite impulse response (although precise knowledge of the channel
length is not crucial). Given the mathematical model, there are three broad classes
of approaches to channel estimation, the distinguishing feature among then being
the choice of the optimization criterion. All of the approaches involve (more or less)
a least-squares error measure. The error definition differs, however, as follows:

o Inverse Filter Error: Filter (equalize) the data by an inverse filter (inverse
to the channel in the noise-free, single-user case) and then minimize (or max-
imize) some function of the inverse filter output. The approaches of (5], [18]
and [19] fall in this category. Typically the cost function is optimized with
respect to the inverse filter coeflicients (equalizer taps) and the optimized in-
verse filter output is the equalized output. This class of solutions results in
a nonlinear optimization problem. Convergence to a local, non-desirable ex-
tremum is a possibility if (practical) finite length equalizers are used although
schemes utilizing variable length equalizers exist to alleviate this problem [19].
On the other hand, precise knowledge of the channel length is not needed to
apply these approaches. Inverse filter criteria based approaches utilize higher-
order statistics implicitly only. They are treated in more detail elsewhere in
this book and, therefore, will not be considered in any detail in this chapter
except for the multi-user case discussed in Sec. 1.4.

e Fitting Error:  Match the model-based statistics to the estimated {data-
based) statistics in a least-squares sense to estimate the channel impulse re-
sponse, as in [27], for example. This approach allows consideration of noisy
observations. In general, it results in a nonlinear optimization problem. It
requires availability of a good initial guess to prevent convergence to a local
minimum. [t yields estimates of the channel impulse response.

e Fquation Error: 1t is based on minimizing an “equation error” in some equa-
tion which is satisfied ideally. The approaches of 3], {6], [21], [22] and [23]
fall in this category. In general, this class of approaches results in a closed-
form solution for the channel impulse response so that a global extremum is
always guaranteed provided that the channel length (order) is known. These



