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The silicon integrated circuit is surely one of the wonders of our age. The ability to fab-
ricate tens of millions of individual components on a silicon chip with an area of a few
cm? has enabied the information age.

Basic discoveries and inventions between 1945 and 1970 laid the foundations for
these chips. In the past 30 years, chip complexity has increased at an exponential rate,
primarily because of the constant shrinking of device geometries, improved manufac-
turing practice, and clever inventions enabling specific functions to be implemented in
new ways. Shrinking geometries permit more devices to be placed in a given area of sil-
icon; improved manufacturing permits larger chips to be economically fabricated; and
clever inventions permit functions to be realized in smaller areas. It is widely expected
that these historical trends will continue for at least another 10-20 years, resulting in
chips that contain billions of components. Such chips will have extraordinary capabili-
ties. We will likely find ourselves in 10-20 years thinking of today’s chips as primitive
precursors to the chips that will be in manufacturing at that time.

The technology that is used to build silicon integrated circuits today has evolved
largely through empirical methods. It often seems that the chip industry moves so
rapidly and new products are introduced so often that there is little time to worry about
the scientific basis of the technologies used to build these chips. Yet in parallel with the
rapid pace of this industry, a strong effort has been proceeding, often behind the scenes,
to develop a solid, physically based understanding of the many technologies used in
chip manufacturing. Because of the feature sizes of structures in modern chips, this un-
derstanding often needs to be on a molecular or atomic level. It is not sufficient any
longer to think of silicon oxidation as simply a chemical reaction between silicon and
oxygen that grows SiO2. Today we must understand the detailed bonding between sili-
con and oxygen atoms and the kinetics that drive this reaction on an atomic basis.

Silicon integrated circuit technology makes use of many diverse fields of science and
engineering. The optical steppers which print microscopic patterns on wafers, represent
one of the most advanced applications of the principles of Fourier optics. Plasma etch-
ing involves some of the most complex chemistries used in manufacturing today. lon im-
plantation draws upon understanding from research in high energy physics. Thin films
on the silicon wafer surface exhibit complex mechanical behavior which stretches our
understanding of basic materials properties. And of course, silicon devices themselves
are approaching physical sizes at which molecular and atomic scale phenomena involv-
ing ideas from quantum mechanics are important. One of the great challenges in inte-
grated circuit manufacturing is the need to draw on scientific principles and engir}eering
developments from such an extraordinarily wide range of disciplines. Integrating the



knowledge from these diverse disciplines has been and will continue to be a great chal-
lenge. Scientists and engineers who work in this field need broad understanding and the
ability to seek out, integrate and use ideas from many fields.

Over the past 20 years much has been learned about silicon and the other materials
that are used in modern chips. Often new knowledge is incorporated in a “model” which
may be a mathematical equation describing a process or an atomistic picture of how a
particular process works. Models codify knowledge and are an elegant way of express-
ing what is known. They also provide a way of exchanging ideas between researchers in
a particular field, and can be tested experimentally to assess their predictive capability.

Within the last decade, a serious atteinpt has been made to develop computer simu-
lation tools which can simulate the various technologies used in fabricating chips. These
simulation tools are built around models of the physical processes involved. Some sim-
ulation tools today use well-established scientific principles to predict experimental re-
sults. Optical lithography simulators, which are based on mathematical descriptions of
Fourier optics, are a good example. Such tools today can accurately predict the image
that will be printed in resist on a silicon wafer, given a particular mask design and a spe-
cific exposure system. Other simulation tools rest on less solid ground. Models of
dopant diffusion in silicon, for example, use models which are still debated in the sci-
entific community and which are clearly incomplete in terms of describing all the phys-
ical phenomena involved. Nevertheless, even these models are very useful today.

This book attempts to describe not only the manufacturing practice associated with
the technologies used in silicon chip fabrication, but also the underlying scientific basis
for those technologies. Those scientific principles are described in terms of models of
the process in many cases. In most chapters, models are discussed in the context of com-
puter simulation programs which have incorporated the models and which use them to
simulate technology steps. We make extensive use of simulation examples to illustrate
how technologies work and to help in visualizing features of the technologies that are
not easily seen any other way. We have found these tools to be powerful teaching aids.

Simulation tools are widely used in the semiconductor industry today to supplement
traditional experimental methods. While it is unlikely that simulation will completely
eliminate the need for experiments, especially in a fast moving industry like the IC in-
dustry, simulators can result in very substantial cost savings in developing new genera-
tions of technology and in solving manufacturing problems. It is widely believed that
simulation tools will be essential in the future if the rapid progress that has character-
ized the semiconductor industry is to continue.

This book is organized somewhat differently than other texts on this general topic,
in two principal ways. The first is the extensive use of simulation examples throughout
the text. These serve several purposes. The first is simply to help explain the scientific
principles involved in each chapter. Simulations help to illustrate things like the time
evolution of a growing oxide layer, a diffusing dopant profile or a depositing thin film.
They are also very useful in illustrating the effects of specific physical Ph;nomena ip a
process step because it is straightforward in simulators to add or ehpnnate §peC1ﬁc
physical models. Simulators provide the only real way in which complex interactions be
tween process steps can be illustrated and understood. Finally, students who spend their



careers in this industry will certainly use these tools and understanding their capabili-
ties and limitations will be important in their future work.

The second way in which this book is organized differently is the discussion of a com-
plete process flow early in the book (Chapter 2). While readers new to this field may not
appreciate many of the complexities of a CMOS process before studying the later chap-
ters, we have found that an early broad exposure to a complete chip manufacturing
process is very helpful in establishing the context for the specific technologies discussed
in later chapters. In teaching the material in this book, we usually cover the CMOS
process in the first or second lecture somewhat superficially, and then return to the
same topic in the last lecture, at which point the details can be more fully discussed.

We have also attempted in each chapter to include some discussion of future trends.
Predicting the future is obviously difficult and there is some risk that including this ma-
terial will simply serve to date this book. Nevertheless, we have found that students are
often interested in this topic and at least in general terms, we believe it is possible to
predict where silicon technology is heading. The semiconductor industry National Tech-
nology Roadmap for Semiconductors (the NTRS) provides some guidance in looking to
the future.

The material in this book can be covered in a one quarter senior/graduate level
course, although not all of the material in each chapter can be covered in one quarter.
A semester long course would provide more time to cover the full range of material in
the book. If the book is used in connection with a one quarter long course, one option
is to minimize the amount of time spent on the Manufacturing Methods and Measure-
ment Techniques sections in each chapter. A set of lecture notes based on figures from
the text is available to instructors by contacting the publisher or the authors by email.
We have used these notes several times in a one quarter course at Stanford.

Follow-on courses to a basic IC fabrication course can make more extensive use of
the simulation tools discussed in this text. We have not used the simulation tools de-
scribed in this book for homework assignments or for lab assignments in connection
with a first course in IC fabrication. We believe that the simulation examples are better
used simply as teaching tools in such courses, to illustrate ideas and to clarify physical
principles. But in a follow-on course, hands-on experience with these simulation tools is
easily possible. Most of the computer tools we use in the book are commercially avail-
able and the vendors of these tools are generally anxious to work with university in-
structors to make the tools available for teaching purposes.

Finally, we acknowledge the many students at Stanford who have helped refine the
material in this book by using various draft versions of the text in classes we have
taught. Their inputs and suggestions have hopefully made this a better book. For many
years we have worked with an energetic group of Ph.D. students and faculty colleagues
at Stanford who have helped to develop some of the models and software tools de-
scribed in this book. We particularly acknowledge Professor Bob Dutton and former
Ph.D. students Professor Mark Law (now at the U. Florida) and Dr. Conor Rafferty
(now at Lucent Technologies). We are also very grateful to a number of individuals who
reviewed draft versions of this book and who provided technical inputs to various chap-
ters. Paul Rissman of Hewlett Packard, Jim McVittie of Stanford, and Mark Law all
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provided substantial inputs and comments. Our own work in this field has been sup-
ported over many years by DARPA (the Defense Advanced Research Projects
Agency) and by the Semiconductor Research Corporation (SRC) . We owe them a con-
siderable debt of gratitude for making our work possible. We welcome comments or
suggestions on this text by email at plummer@ee.stanford.edu, deal@ee.stanford.edu, or
griffin@stanford.edu. '
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