Javatgp i B &

FJava {3 XML

(ER)
Processing XML with Java™

A Guide to SAX, DOM, JDOM, JAXP, and TrAX

(3£) Elliotte Rusty Harold %

- WD Ay k@
4 www. sciencep. com

Java 7 5L 45 &

] Java 4bIE XML
CRZEDRRD

Processing XML with Java'"
A Guide to SAX, DOM, JDOM, JAXP, and TrAX

() Elliotte Rusty Harold w3

4 & % K u
S

Bl TS vy VA

T

L A N

El=: 01-2003-7655

ACE R XML ERE RS, FA A TR Java PR XML IS R, ARG XML M SH R,
LR GO E IDOM "% .
AP B, (0 10 E R Java 48 XML (F4E A, 4G 1 Java Ry BRI

English reprint copyright©:2003 by Science Press and Pearson Education Asia Limited.

Original English language title: Processing XML with Java™: A Guide to SAX. DOM, JDOM, JAXP, and
TrAX, 1" Edition by Elliotte Rusty Harold, Copyright©2003

ISBN 0-201-77186-1

All Rights Reserved.

Published by arrangement with the original publisher. Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
DLHE f ot NRCHEANMBE N CAN Rl &k B IR R T B R it o /YR AT
A PSS 1141 Pearson Education(357: #46& H HIADBOCKI D 8148, KA B AR,
B H LR B(CIP) 3 1E

NI Java &P XML =Processing XML with Java™: A Guide to SAX,DOM,JDOM.JAXP,and TrAX/
¢ L) Elliotte Rusty Harold % # 3200 AL —dbui: BH¥ L E, 2004
CYava B 00 11D
ISBN 7-03-012495-2
PO HG ILWJava i 5—FOF 8O — 8@ g £, XML—RUr i f—0&
IV.TP312

VTR A P4 S0 CIP B 1 120030 3 103030 4

ARG 2R/ wifmkit: 47 2
FAEPH: SER/HOHHE: L ELFHITIE
A 2 2 k& il
RIS NS LRI URY
b s 100717
http:// www . sciencep.com

s w4 Dk
FIERRACATT B DAY

%

2004 4 TR N JFA: 787%960 1il6
2004 51 I RKEIY Figk: 69 14

Ml 1—3 000 8 1315000

EHr: 108.00 7T
(o NS R B) B B R R GR D)

RIS

"-Ifi“i’xki1‘iif"}"%$‘¥&mﬂ] B & ZAE ROV R T 1 LA e Java Y

Bk ST A B AR A 2k . (WIS SRE R AT M AL P S R B AR IR Java R Y (R E A
Wi E LA A pLAY CHeREITF Y "‘f#%,ﬁiﬁ'”}, i HL Java af DLy (@A MUAT Judk fF o) i, %

o il BVE . WAetEE Java MEEERIBLE, CLEETZ N IL T AT
BPE R AT Web (I RFEH R, Java FOR HATIEROILEY A2 Java
Pidh) ANARAGE . Java PIRT B ——4FRIE 5 Oak KRB TR &S F
Internet {4 & 5380 1" Oak BYHE ARl Java 1Y) Aifid s BIAE. J2EE i R L8 R 2k
Web [FHRS IR

BFRA T T A AU B R AL B A AR A2 T H . SO R L B B AU bl
F TR AR AR A A0 R R . AT SR e R B i) e e A b T2 A7 ’x‘ﬁlﬁ’
LA B3 3 Y vk BT A X 4 i HE3C 1A Gamma \Helm Johnson 1 Vlissides
& E s R QR R . TR R SRR O R R it et 2 B
PRSI A 45K BLEFAO T 6 R A PE RGEAL & 1 R AT R fE
SRR TSR 2 AR A AR Y BUKOTE AN T 6 B bt

AN T Java BRIV BRI Java SRR UGROZE I B4 L TR 1O Java
FER AT RGN B2 00 S5 R sh &

CJava B TR AR B0 4R B RUR . AVTRRAE Y Java FEFP M, TRAY
#0°7 Gamma . Helm. Johnson 1 Vlissides & #Hy£s i 1385 (I b o Him i A7
23 AL L 415, Java BRI BT DAHLH Mﬁé{ﬁlﬂfnﬁiﬁﬁﬂ’wﬁj@ JAE b
FETE HRLC A B A & A ihi gl Y Java BRI

CJava BT Y A4 T TR IF AL T, R T Java J1 R8BI 97 A4
R e R B BRI DU E B AL LA
ZE Rk R GRGCRIE TR % BN RE RS LR RIAY J2EE ISP
EJB Fl APL 25 A TAVEE. 54 HAT —EaTRALRIA Java BV GRS

(J2EE F48550 Y Sun Java Center (Y VETRILT HIifY J2EE J2 B Sps e 40 11 L4
o4 B GA J2EE AR (Java Server Pages. Java Servlet, Enterprise Java Beans,
Java Message Services %) HUBEst . Feflbscpe . B Rmemmee ST R RRIR T el

Ao 12EE A3 15 AR A0 KR REB B AU PSR Lt LRSI,

ﬁk-f&ﬁ\l{mi{% PEE WEATE | RUTHL. BT PR EREA IS R, i

ii A Java ALZ2 XML (#56PRR)
WA TR MR & J2EE SEH 0 HRIRT A A

XML JE#-ACSCRARME, Web TU . B . MREDEESE, Hal LU XML SCR4S
HK#E YRR B A Java B0 HE XML 4. T Java 4088 XML) 4N 1
anfarfdi F Java ACisEE XML SCRY. 1% 132 H AT Al & /) Java 20 XML £ AR B4,
N ZS T 1000 5T SAX, DOM, JDOM, JAXP, TrAX, XPath, XSLT, SOAP (i)
P X BIE S T Java 1275 XML SCRYIY Java FRIY B FLPI A SR AE S B i 2K
JHICHT AL, $550iE S8 R T- Wi 275

£ (32 Java) . FE RTS) LR UME L2 —, Dibble M Java “F- 545 4 #Y LI
(] SEOMLA T, UK 1 RTS) &30 E SR I i AN 12 A9 SET I B 5 1 A
RSPt % B 2 T ASCEM R IR RSN ks
BHCAL I 3 | SRR TR DL JVM BREERG SRS [l SIRIBCEE . JoHERE
Vilal . BERNAEA CRFT VAR R CHERR N AT R B Rl A R SR L R A
i DA NCHCR SR G SR SR RO PR R AR A
R . T A 458 Java R R AL

(Java BOUELEF TEBUMNT) AR TR U ER SR . WnEER . HERR L BAST . R
WA A JET R R FHEIEEA ¢ T BT . SRR T ARNEAY Java SIER. 1% I E Y™
WELOFOrL affERY B

Ak BN T Java WHIIT S EE H . AEA BTN Java Bllidh
WIRTEL: . Java TR Java 80N . J2EE £, FIH 45 B F I Java FRER N
20K (Java A0BH XML SCRS# Java SR R AR) HNA BA e BE TR, B
AT EBEREAB EME

4795 U 51 Java BGEFF& RN FI SO OR [RIRR L RIS B HERE XA 15, AR e
490 (5 R ARG 4 P (L Wi 2K

Ak FRAERFREEHFEIALE KE BT
B4R A2 Java 2R, @A RS IRtF &

Preface

One night five developers, all of whom wore very thick glasses and had recently
been hired by Elephants, Inc., the world’s largest purveyor of elephants and ele-
phant supplies, were familiarizing themselves with the company’s order processing
system when they stumbled into a directory full of XML documents on the main
server. “What'’s this?” the team leader asked excitedly. None of them had ever heard
of XML before, so they decided to split up the files among them and try to figure
out just what this strange and wondrous new technology was.

The first developer, who specialized in optimizing Oracle databases, printed
out a stack of FMPXMLRESULT documents generated by the FileMaker Pro data-
base where all the orders were stored, and began poring over them. “So this is
XML! Why, its nothing novel. As anyone can see who's able, an XML document is
nothing but a table!”

“What do you mean, a table?” replied the second develaper, well versed in
object-oriented theory and occupied with a collection of XM1 documents that
encoded UML diagrams for the system. “Even a Visual Basic programmer could see
that XML documents aren't tables. Duplicates aren't aliowed in a wble relation,
unless this is truly some strange mutation. Classes and objects are what these doc-
umenis are Indeed. it should be obvions o the very first pass. An XML document
P ot and 2 DTD s aclass

bt 3 -tange kind of objecty mdeed' said the thied developer, a web
designer of some renow nwho had toaded the XHEMLU aser documentation for the
order processing svstem into Mozilla. " don’t sce any typesat all. Il vou think this

XXV

XXvi J

Preface

is an object, then it’s your software [refuse to install. But with all those stylesheets
there, it should be clear to anyone not sedated that XML is just HTML updated!”

“HTML? You must be joking” said the fourth, a computer science professor on
sabbatical from MIT, who was engrossed in an XSLT stylesheet that validated all of
the other documents against a Schematron schema. “Look at the clean nesting of
hierarchical structures, each tag matching its partner as it should. I've never seen
HTML that looks this good. What we have here is S-expressions, which is certainly
nothing new. Babbage invented this back in 1882!"

“S-expressions?” queried the technical writer, who was occupied with docu-
mentation for the project, written in DocBook. “Maybe that means something to
those in your learned profession. But to me, this looks just like a FrameMaker MIF
file. However, locating the GU1 does seem to be taking me a while.”

And so they argued into the night, none of them willing to give an inch, all of
them presenting still more examples to prove their points, but none bothering to
look at the others’ examples. Indeed, they're probably still arguing today. You can
even hear their shouts from time to time on xml-dev. Their mistake, of course, was
in trying to force XML into the patterns of technologies they were already familiar
with rather than taking it on its own terms. XML can store data, but it is not a data-
base. XML can serialize objects, but an XML document is not an object. Web pages
can be written in XML, but XML is not HTML. Functional (and other) program-
ming languages can be written in XML, but XML is not a programming language.
Books are written in XML, but that doesnt make XML deskiop publishing software.

XML is something truly new that has not been seen before in the world of
computing, There have been precursors to it, and there are always fanatics who
insist on seeing XML through database (or object, or functional, or S-expression)
colored glasses. But XML is none of these things. It is something genuinely unique
and new in the world of computing; and it’s possible to understand it only when
you’re willing to accept it on its own terms, rather than forcing it into yesterday’s
pigeonholes.

There are a lot of tools, APIs, and applications in the world that pretend XML
is something more familiar to developers—that it just a funny kind of database, or
just like an object, or just like remote procedure calls. These APls are occasionally
useful in very restricted and predictable environments; however, they are not suit-
able for processing XML in its most general format. They work well in their limited
domains, but they fail when presented with XML that steps outside the artificial
boundaries they've defined. XML was designed to be extensible, but sadly many of
the tools designed for XML aren't nearly as extensible as XML itself.

This book is going to show you how to handle XML in its full generality.
It pulls no punches. it does not pretend that XML is anything except XML, and it
shows you how to design your programs so that they handle real XML in all its
messiness: valid and invalid, mixed and unmixed, typed and untyped, and both all

Who You Are il

and none of these at the same time. To that end, this book focuses on APIs that
don't try to hide the XML. In particular, there are three major Java APls that cor-

rectly model XML, as opposed to modeling a particular class of XML documents or
some narrow subset of XML. These are

SAX, the Simple AP for XML
DOM, the Document Object Model
JDOM, a Java native AP1

These APIs are the core of this book. In addition, I cover a number of preliminaries
and supplements to the basic APls, including

XML syntax

DTDs, schemas, and validity

XPath

XSLT and the TrAX API

JAXP, a combination of SAX, DOM, and TrAX with a few factory classes

And, since we're going to need a few examples of XML applications to demon-

strate the APls, 1 also cover XML-RPC, SOAP, and RSS in some detail. However, the
techniques this book teaches are hardly limited to those three applications.

» Who You Are

This book is written for experienced Java developers who want to integrate XML

into their systems. Java is the ideal language for processing XML documents. lts

strong Unicode support in particular made it the preferred language for many early

implementers. Consequently, more XML tools have been written in Java than in

any other language. More open source XML tools are written in Java than in any

other language. More developers process XML in Java than in any other language.
Processing XML with Java™ will teach you how to

Save XML documents from applications written in Java
Read XML documents produced by other programs
Search, query, and update XML documents

Convert legacy flat data into hierarchical XML

Communicate with network servers that send and receive XML data

Xxviii

Preface

Validate documents against DTDs, schemas, and business rules

Combine functional XSLT transforms with traditional imperative Java code

This book is intended for Java developers who need to do anything with XML.
It teaches the fundamentals and advanced topics, leaving nothing out. It is a com-
prehensive course in processing XML with java that takes developers from having
little knowledge of XML to designing sophisticated XML applications and parsing
complicated documents. The examples cover a wide range of possible uses, includ-
ing file formats, data exchange, document transformation, database integration,
and more,

What You Need to Know

This is not an introductory book with respect to either java or XML. assume you
have substantial prior experience with Java and preferably some experience with
XML. On the Java side, I freely use advanced features of the language and its class
library without explanation or apology. Among other things, 1 assume you are
thoroughly familiar with the following:

Object-orieﬁted programming, including inheritance and polymorphism.

s Packages and the CLASSPATH. You should not be surprised by classes that
do not have main() methods or that are not in the default package.

/0 including streams, readers, and writers. You should understand that
System.out is a horrible example of what really goes on in Java programs.

The Java Collections API including hash tables, maps, sets, iterators, and
lists.

In addition, in one or two places in this book I use some SQL and JDBC. These sec-
tions are relatively independent of the rest of the book, however, and chances are if
you aren't already familiar with SQL, then you don't need the material in these sec-
tions anyway.

What You Need to Have

XML is deliberately architecture, platform, operating system, GUI, and language
agnostic (in fact, more so than Java). It works equally well on Mac 0S, Windows,
Linux, OS/2, various flavors of Unix, and more. It can be processed with Python.
C++, Haskell, ECMAScript, C#, Perl, Visual Basic, Ruby, and of course Java. No
byte-order issues need concern you if you switch between PowerPC, X86, or other

How to Use This Book | xxix
T

architectures. Almost everything in this book should work equally well on any
platform that’s capable of running java.

Most of the material in this book is relatively independent of the specific Java
version. Java 1.4 bundles SAX, DOM, and a few other useful classes into the core
JDK. However, these are easily installed in earlier JVMs as open source libraries
from the Apache XML Project and other vendors. For the most part, 1 used Java 1.3
and 1.4 when testing the examples; therefore, it's possible that a few of the classes
and methods used are not available in earlier versions. In most cases, it should be
fairly obvious how to backport them. All of the basic XML APIs except TrAX
should work in Java 1.1 and later. TrAX requires java 1.2 or later.

= How to Use This Book

This book is organized as an advanced tutorial that can also serve as a solid and
comprehensive reference. Chapter 1 covers the bare minimum material needed to
start working with XML, although for the most part this is not intended as a com-
prehensive introduction, but more as a review for readers who already have read
other, more basic books. Chapter 2 introduces RSS, XML-RPC, and SOAP, the XML
applications used for examples throughout the rest of the book. This is followed by
two chapters on generating XML from your own programs (a subject all 1oo often
presented as a lot more complicated than it actually is). Chapter 3 covers generat-
ing XML directly from code, and Chapter 4 covers converting legacy data in other
formats 1o XML. The remaining bulk of the book is devoted to the major APIs for
processing XML

. The event-based SAX AP}

: The tree-based DOM AP1

% The tree-based JDOM APl
XPath APIs for searching XML documents
The TrAX API for XSLT processing

Finally, the book finishes with an appendix providing quick references to the main
APIs.

1f you have limited experience with XML, I suggest that you read at least the first
five chapters in order. From that point forward, if you have a particular AP! prefer-
ence, you may begin with the part that covers the major APl you're interested in:

1 Preface

Chapters 6 to 8 cover SAX.
Chapters 9 10 13 cover DOM.
Chapters 14 and 15 cover JDOM.

Once you're comfortable with one or more of these APls, you can read Chap-
ters 16 and 17 on XPath and XSLT. However, those APls and chapters do require
some knowledge of at least one of the three major APls.

- The Online Edition

The entire book is available online in plain-vanilla HTML at my Cafe con Leche
web site. You can find it at http://www.cafeconleche.org/books/xmijava/. Every word
of this book is there. Nothing has been heid back or left out. 1 do hope you also
find the printed book useful and choose to buy it—its certainly cheaper than the
paper and toner you'd use up printing out all 1,120 pages from your laser printer—
but you are by no means obligated to do so. My goal is 1o make this material as
broadly available and useful as possible.

The online version has no protection other than copyright law and your own
good will. You don’t need to register to read it, or to download some special elec-
tronic key that becomes invalid when you buy a new laptop (and that probably
wouldn’t run on Linux or a Mac in the first place). [want people to read and use
this book. 1 do not want to put up silly roadblocks that make it less useful than it
could be. 1 do ask, as a courtesy, that you do not republish the online edition on
your own server. Doing so makes it extremely difficult for me to keep the book up
to date. If you want to save a [ew pages on your laptop so you can read this book
on an airplane, I don't really mind. But please dont pass out your own copies to
anyone else. Instead, refer your friends and colleagues to the web site or the
printed book.

+ Some Grammatical Notes

The rules of English grammar were laid down, written in stone, and encoded in the
DNA of elementary school teachers long before computers were invented. Unfortu-
nately, this means that sometimes 1 have to decide between syntactically correct
code and syntactically correct English. When forced to do so. English normally
loses. This means that sometimes a punctuation mark appears outside a quotation
mark when yowd normally expect it to appear inside, a sentence begins with a low-
ercase letter, or something similarly unsettling occurs. For the most part, I've tried

Some Grammatical Notes XXXi

to use various typefaces to make the offending phrase less jarring. In particular,
please note the following:

Italicized text is used for emphasis, the first occurrence of an important term,
titles of books and other cited works, words in languages other than English,
words as words themselves (for example, Booboisie is a very funny word),
Java system properties, host names, and resolvable URLs.

Monospaced text is used for XML and Java source code, namespace URLs,
system prompts, and program output.

Italicized monospace text is used for pieces of XML and Java source
code that should be replaced by some other text.

Bold monospaced text is used for literal text that the user types at a
command line, as well as for emphasis in code.

Its not just English grammar that gets a little squeezed, either. The necessities
of fitting code onto a printed page rather than a computer screen have occasionally
caused me to deviate from the ideal Java coding conventions. The worst problem is
line length. 1 can fit only 65 characters across the page in a line of code. To try to
make maximum use of this space, [indent each block by two spaces and indent
line continuations by one space, rather than the customary four spaces and two
spaces respectively. Even so, I still have to break lines where 1 otherwise would pre-
fer not to. For example, I originally wrote this line of code for Chapter 4:

result.append(” <Amount>" + amount + “</Amount>\ri\n"};

To fit it on the page, however, 1 had to split it into two pieces, like this:

result.append(" <Amount>");
result.append(amount +"</Amount>\r\n");

This wasn't too bad, but sometimes even this wasn’t enough and I had to
remove indents from the front of the line that would otherwise be present. This
occasionally forced the indentation not to line up as prettily as it otherwise might,
as in this example from Chapter 3:

wout.write(
"wymins="http://namespaces. cafeconleche.org/xmljava/ch3/’ \r\n"
)i

XXXii

Preface

The silver lining to this cloud is that sometimes the extra attention 1 give to the
code when I'm trying to cut down its size results in better code. For example, in
Chapter 4, I found 1 needed 1o remove a few characters from this line:

OutputStreamWriter wout = new QutputStreamWriter(out, "UTF8");

On reflection 1 realized that nowhere did the program actually need to know that
wout was an OutputStreamWriter as opposed to merely a Writer. Thus | could
easily rewrite the offending line as follows:

Writer wout = new OutputStreamwWriter(out, "UTF8");

This follows the general object-oriented principle of using the least-specific type
that will suit. This polymorphism makes the code more flexible in the future
should 1 find a need to swap in a different kind of writer.

= Contacting the Author

1 always enjoy hearing from readers, whether with general comments, specific ways
I could improve the book, or questions related to the books subject matter.
Because this book is being published in its entirety online, it is possible for me to
reprint at least the online edition much faster than can be done with a traditional
paper hook. Thus corrections and errata are especially helpful because 1 have a real
chance to fix them. Before sending in a correction, please do check the online edi-
tion to see if 1 have already fixed the problem.

Please send all comments, inquiries, bouquets, and brickbats to elharo@
metalab.unc.edu. 1 get a lot of e-mail, so I can’t promise 10 answer them all; but 1
do try. 1ts helpful if you use a subject line that clearly identifies yourself as a reader
of this book. Otherwise. your message may accidentally get misidentified as spam |
don’t want or bulk mail 1 don’t have time to read and be dropped in the bit bucket
before 1 see it. Also, please make absolutely sure that your message uses the correct
reply-to address and that the address will be valid for at least several months after
you send the message. There’s nothing quite as annoying as taking an hour or more
to compose a detailed response 1o an interesting question, only to have it bounce
because the reader sent the e-mail from a public terminal or changed their 1SP. But
please do write to me. I want to hear from you.

Elliotte Rusty Harold
Brooklyn, New York
June 7, 2002

Acknowledgments | xxxiii
T

= Acknowledgments

Thomas Marlin provided me with the original Latin text of the Fibonacci problem
you'll find in Chapter 3.

Jason Hunter’s encyclopedic knowledge of the Java Servlet AP1 was essential to
the design and execution of the servlet code in this book. Donald Sizemore helped
me get my servlets installed and running on iBiblio.

Luke Tymowski provided some of the RSS examples and helped me debug var-
ious problems with my Cobalt Qube.

Bruce Fckel and Chuck Allison helped me decipher the relative capabilities of
Java and C++. Bruce Eckel also helped out with Python, and Matt Sergeant and Bren-
dan McKenna helped out with Perl. Philip Nelson, Robert A. Casola, and Rob Smith
helped with Visual Basic. None of these people necessarily agree with what 1 wrote
about those relative capabilities (in fact, more often than not they vehemently dis-
agree; de linguis non disputandum est); but 1 couldn’t have done it without them.

Although this is the sixth book I've written about XML, it is the first one 1've
written in XML. That could not have happened without Norm Walsh's DocBook
DTD and XSL stytesheets for DocBook.

Many people helped out with comments, corrections, and suggestions. These
include Paymen Aliverdi, Sergey Astakhov, Dagmar Buggle, William Chang, Rich-
ard Dedeyan, Paul Duffin, Lacey Anne Edwards, Peter Elliott, Paul Erion, Bernard
Farrell. Wei Gao, Scott Harper, Stefan Hassig, Martin Henke, Markus jais, Oliver
Lorpilla, Igor Kostjuhin, Alexander Krumpholz, Wes Kubo, Ramnivas Laddad,
Manos Laliotis, lan Lea, Frank Lee, Ray Leyva, Rob Lugt, Richard Monson-Haefel,
Gary Nichols, James Orenchak, Aron Roberts, Carlo Rossi, Raheem Rufai, Arthur
E. Salwin, Peter Sellars, Diana Shannon, and Andrew Shebanow. Mike Blackstone
deserves special thanks for his copious notes.

Mike Champion, Andy Clark, Robert W. Husted, Anne T. Manes, Ron Weber,
and John Wegis did yeomanlike service as technical reviewers. Their comments
substantially improved the book.

As always, the fotks at the Studio B literary agency were extremely helpful at all
steps of the process. David Rogelberg, Sharon Rogelberg, and Stacey Barone should
be called out for particular commendation.

This is my first book for Addison-Wesley, but its not going to be my last. They
were all wonderful people to work with, and 1look forward to working with them
again. Mary T. O'Brien shepherded this book from contract to completion. Alicia
Carey ably managed submissions and communications. jody Thum corrected
many of my grammatical failings. Kathy Glidden and John Fuller shepherded the
book through the unusual production process writing in XML necessitated. Rich-
ard T. Evans produced an excellent index.

Finally, as always, my biggest thanks are due to my wife, Beth, without whose
love and understanding this book could never have been completed.

Contents

List of Examples

xiii

List of Figures xxiii

Preface XXV

Who You Are xxvii

What You Need 10 Know xxviii

What You Need to Have xxviii

How to Use This Book xxix

The Online Edition XXX

Some Grammatical Notes XXX

Contacting the Author xxxii
Acknowledgments xxxiil

Part ! XML 1
Chapter 1 XML for Data 3

Motivating XML
A Thought Experiment
Robustaess
Extensibility
Ease-of-Use

o e W

—

Contents

Chapter 2

XML Syntax
XML Documents
XML Applications
Elements and Tags
Text
Autributes
XML Declaration
Comments
Processing Instructions
Entities
Namespaces
Validity
DTDs
Schemas
Schematron
The Last Mile
Stylesheets
CSS
Associating Stylesheets with XML Documents
XSL
Summary

XML Protocols: XML-RPC and SOAP

XML as a Message Format
Envelopes
Data Representation
HTTP as a Transport Protocol
How HTTP Works
HTTP in Java
RSS
Customizing the Request
Query Strings
How HTTP POST Works
XML-RPC
Data Structures
Faults
Validating XML-RPC
SOAP
A SOAP Example
Posting SOAP Documents
Faults
Encoding Styles
SOAP Headers
SOAP Limitations
validating SOAP

13
13
15
16
19
21
2
23
24
25
28
32
32
37
41
43
43
44
45
46
53

57

58
58
59
64
65
68
73
77
77
81
82
85
89
90
96
97
98
100
102
112
116
117

Contents

Chapter 3

Chapter 4

Chapter 5

Cusiom Protocols
Summary

Writing XML with java
Fibonacci Numbers
Writing XML
Better Coding Practices
Auributes
Producing Valid XML
Namespaces
Qutput Streams, Writers, and Encodings
A Simple XML-RPC Client
A Simple SOAP Client
Servlets
Summary

Converting Flat Files to XML

The Budget
The Model
Input
Determining the Output Format
Validation
Attributes
Building Hierarchical Structures from Flat Data
Alternatives to Java
Imposing Hierarchy with XSLT
The XML Query Language
Relational Databases
Summary

Reading XML

InputStreams and Readers

XML Parsers
Choosing an XML AP1
Choosing an XML Parser
Available Parsers

SAX

DOM

JAXP

JDOM

dom4j

ElectricXML

18
119

121
122
124
125
127
128
130
132
139
142
145
149

151

152
154
156
159
165
169
174
101
193
196
201
208

21

211
216
218
222
226
229
234
238
242
246
248

