UML Y5 i) X % it %2 E A 3

W kA
TR

|
A PRACTICAL GUIDE
TO TESTING
OBJECT-ORIENTED
SOFTWARE

€ JOHN D. McGREGOR
DAVID A. SYKES

BOOCH
4 JACOBSON

PR | UK DAL

WWW.sciencep.com

e SERIES EDITORS

UML 5 e i & it B0 A H

Xt SRR R £ 72 TR B

John D. McGregor e
(%) David A. Sykes i+

E=r. 01-2003-4434

CRE-N

A IR B PR B i R A A 7 1 RN T B A TF I IRl 0 A P MK T-2HAF IR AR 1, [
PRSI SE AT SO B AC TSRS H T 0l 16 6 AR D o) R AR TR B AR AL &b
W T 1 R SRR BT R VLB AR . P A T TR R R S R R R B AN
B, UURBB B BRI A A R 4. A E S ORI B3 PR TG, A
AL RSB S BRI S B X , _

" a;ﬁ%gf}m% SRR, SR AR SR BOR N AR H B R e, BulE R
"‘—;é’:' B o

English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: A Practical Guide to Testing Object-Oriented Software by John D. McGregor
and David A. Sykes, Copyright©2001

ISBN 0-201-32564-0

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Repubtic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
AR Frh e AR (A 35 &, TR TP N & B3O #if k1T,

A BEHTNGEH Pearson Education (K54 #F HIRERD OB 4525, LS H R
EBEMSE CIP)EIER

X B HAF R R NE (38) FH/TE X (McGregor, G. D.) () WEFHY (Sykes, D. A.) 4i#.
—@ AR, —dbgl. BlEHRRAE, 2003

(UML Yl X S 2B E)

ISBN 7-03-011914-2

[.3f... N.OF..@d0... M. KE—W—K3x IV.TP31LS

R R B 51 CIP B4 7 (2003) %5 062353 &

FR%E. AR/ TESHE. B2
FAEH: SAR/HEHE AFALPHETE

4 2 & B B WK
At 54 ML 16
WP 4 y: 100717
http:// www . sciencep.com
s & % & 5 Hk
Rl i sl ety Rt Ioahesdy
3

20038 A% — K H&K: 787X960 116
2038 A —REA % 25112
E1%: 1—2500 ¥ 612000

Efft: 45.00 5%
AR RS, R AR iR K

FEIRIE

BEE T HURE {1 B A B2 R AR RS T P, TSR EARY K. &
AT E PO) R o Ol R, BRI 2. X EARTT R LR AR 1R B 4= R0
PEk. 20 42 60 AR EMLEE A 1IEREHA R BRI TR 5 A 2B &
BB, FREKEFETEM 60 FRZLTREAFHT TR L, SR 70
SRR HTIRTT A E: 80 AWM LR X R IF K 751, BB M 8 X RAIFF AR ik -

T 1) WP R BB & B R TEGS A AL R T R SR R I AT RV LA B R TR
Wiy, Bz, #iE, gk HEBZEALARMEBENH, RFRETRELHE
oA Ze Y O AN H BEE R , TEIR KRR FE BRI, W 2B AR K T
BFRIHES ., UG XA AR R B, JE BT 1 X R e st At .

20 tH42 80 ALK 90 E W), Sefm BT LR T R BRI ., Kb,
Booch, Coad/Yourdon . OMT Fl Jacobson %5 7145 5 1 181) X S 4R {4 & B IZ KA .
&R B A 26 T) X R AR S AR RN R HR R, BIERESARTR], & REIR EMFIRE:
WAR, @it 90 ERARRFHRIRZ AL, AMTZEAREARF M EBEA A
SRS, R HRA S Mo, dt M EHTRA Y, HFEER
BRI BMARKHES, FHTH TR SYME. EXMERLT, &—-2EF
(UML) F 90 A EAR i T A

UML 7= B AT =ML R R A 8% K G. Booch. J. Rumbaugh Fi L
Jacobson i I A1E. AT S Ry AP IR I T KR FIREIREEE, f UML 98t
FIFREAE IR 3 7 DA —Ror s, AR T RiFR P HEF ot — 29 R
I . UML AR RIFRRSE RS R T RRIOES, SRR IRE,
B I — BRI XU . 1997 4E 11 A UML % OMG ZH4UE 2R 4 iR B isih
=, IFEREE LSRR A R O S b ARG PR

UML {EiEEFIE HE SUH A T KRB TR, DR RN TE X R T 0
S E R R U R Ny RUE SO S, W EERRA Ml B, Wik
% FlX S AT & . UML WL —FEsii s s A e, SAEFEPR—%
HASKE N . RAEHIEMNE S SRR EEH T ZHE ., (BS54
R UL & FhER Ay B ok HUIRY

M UML BRI A TG, 25 THE L AWER, OMG HKRMNFRL A
RS HE T SR A T ARrERsb e, e A GREMAF . BB ZHAH

i 2t R AR AR R

FRASURMEMEARM AR, WEEGERS . BARESEWHERS . AL FR
. ARG, REKHE, D/FEAgEATRABETE. FETH. IBE8E.
EEEHEHE, MECHMARNUR FHEVSRYG, SaTATIHERGRSE, M
Hitit . kSRR, Sl EFE R NEW ST IR, F%,

£ UML R BLAMRE S, BEEBETRi—MREPRSERAER, kL
AH UML2.0 fA R UML X — K E KMkt K8 UML % aEiES KiK.
AT . ERAERRETER, AR TRARMEER i,

AABUR T SEEXR AT UML XK 12 248, RET BRXTRERBEHN
BREEHLIKL UML MH R shas. Hp i Kot i Xt SR B BE i 57 5 30 B A0 X
LAY (HRNRERGEMERRT) TEHE T mMATRAEAMS . BT,
FKRAXER . BRI, R Bk R G ST JLAEIE T 16 3 S H R ST e iy 1 3
WHIRS ¥ (H UML TR R) TENB T HRNRNE RN B, 25
Brie, BitHB T ROUERIME L SEAR; (BRAREE) N @ TER T AR
RPFEFEAERNRIESEA; (UML xSt aa) Wi E 2 HayiE e
pOp -3ii7ogtifial: o115y N

B R UML 7E55E Uk i9iz FIAAE X LA . (UML 2l REETF &) iHE8 T TS
B R GEIT A IS EX UML #1787 BAEAR ;- F UML M Web SFBRF) +HETIE
Fi UML 3#17 Web M BB ZERNBER G FE; (HARXNRAZNR. #8, %
ESTEY 4 T4 UML LA T m 3 R Rl Sust it i £k 5 TR, (4.
Fatk . HEZES UML A) WHE T WAl F UML X7 i) % 52 B B R —— - HE 2R 4
REHEM B ERME . (UML 5 Visual Basic RRFF LY FEIHE T M UML R 7|
Visual Basic F27 B8 585 k.

NFHEES RHEEERWEFAS: (COM FFEOLL) M (ATL HEANE) , &
ANFT T 3 R BRI R AR——COM il ATL AR B REIT SHEAR M.

H —A (Executable UML FiRNE) , AP T /4T UML RS 5 HX
BEAR, EHERMNISIE SR RREMA A RBRARTRE, WREFGRRMAIT R
B — R AIRE :

B2, XERHYKMNEQE T SR GEa AN ST BEENFESHER, F
B TR R A S SRR AR | FIRREEAE TERANNSE, FEABTCERR
A TAIESUE. ATLAS, S—AHREM,

BETH, HFaRASRPAAREMEEREXER, SERKMEBE . 2 AR,

AFRFHIMR HK HE

Preface

Testing software is a very important and challenging activity. This is a book for
people who test software during its development. Our focus is on object-
oriented and component-based software, but you can apply many of the tech-
niques discussed in this book regardless of the development paradigm. We
assume our reader is familiar with testing procedural software—that is, soft-
ware written in the procedural paradigm using languages such as C, Ada,
Fortran, or COBOL. We also assume our reader is familiar and somewhat expe-
rienced in developing software using object-oriented and component-based
technologies. Our focus is on describing what to test in object-oriented devel-
opment efforts as well as on describing techniques for bow to test object-
oriented software, and how testing software built with these newer technolo-
gies differs from testing procedural software.

What is software testing? To us, testing is the evaluation of the work prod-
ucts created during a software development effort. This is more general than
just checking part or all of a software system to see if it meets its specifications.
Testing software is a difficult process, in general, and sufficient resources are
seldom available for testing. From our standpoint, testing is done throughout a
development effort and is not just an activity tacked on at the end of a develop-
ment phase to see how well the developers did. We see testing as part of the
process that puts quality into a software system.As a result, we address the test-
ing of all development products (models) even before any code is written.

We do not necessarily belicve that you will apply everything we describe in
this book.There are seldom enough resources available to a development effort
to do all the levels and kinds of testing we would like. We hope you will find a
number of approaches and techniques that will prove useful to and affordable
for your project.

xii

B Preface

In this book we describe a set of testing techniques.All of the techniques we
describe have been applied in practice. Many of these techniques have been
used in a wide variety of industries and on projects of vastly different sizes. In
Chapter 3, we will consider the impact of some of these variables on the types
of testing that are routinely performed.

To describe these techniques, we rely in many cases on one or more exam-
ples to illustrate their application. We hope from these examples and from our
explanations that you can apply the same techniques to your project software
in a straightforward manner. The complete code for these examples, test
code, and other resources can be obtained from bttp.//cseng.aw.com/book/
0.3828.0201325640.00.btml.

In order to make this book as useful as possible, we will provide two major
organizational threads. The physical layout of the book will follow the usual
sequence of events as they happen on a project. Model testing will be
addressed earlier than component or code testing, for example. We will also
include a set of questions that a tester might ask when he or she is faced with
specific testing tasks on a project. This testing FAQ will be tied into the main
body of the text with citations.

We have included alternative techniques and ways of adapting techniques
for varying the amount of testing. Testing life-critical or mission-critical soft-
ware requires more effort than testing an arcade game. The summary sections
of each chapter should make these choices clear.

This book is the result of many years of research, teaching, and consulting
both in the university and in companies. We would like to thank the sponsors
of our research, including COMSOFT, IBM, and AT&T for their support of our
academic research. Thanks to the students who assisted in the research and
those who sat through many hours of class and provided valuable feedback on
early versions of the text. The consultants working for Korson-McGregor, for-
merly Software Architects, made many suggestions and worked with early ver-
sions of the techniques while still satisfying client needs. The employees of
numerous consulting clients helped us perfect the techniques by providing real
problems to be solved and valuable feedback. A special thanks to Melissa L.
Russ (formerly Major) who helped teach several tutorials and made her usual
insightful comments to improve the material.

Most of all, we wish to thank our families for enduring our mental and phys-
ical absences and for the necessary time to produce this work: Gayle and Mary
Frances McGregor; Susan,Aaron, Perry,and Nolan Sykes.

JDM
DAS

Contents

Chapter 1

Preface xi

Introduction 1

Who Should Read This Book? 2
What Software Testing Is—and Isnt 3
What Is Different about Testing Object-Oriented
Software? 5
Overview of Our Testing Approach 6
Test Early 7
Test Often 7
Test Enough 8
The Testing Perspective 8
Organization of This Book 8
Conventions Used in This Book 9
A Continuing Example—Brickles 10
Basic Brickles Components 11
Brickles Physics 11
Game Environment 14

iv B Contents

Chapter 2 The Testing Perspective 15

Chapter 3

Testing Perspective 15
Object-Oriented Concepts 17
Object 18
Message 20
interface 21
Class 22
Inheritance 31
Polymorphism 32
Development Products 39
Analysis Models 40
Design Models 56
Source Code 59

Summary 62

Planning for Testing 65

A Development Process Overview 66
A Testing Process Overview 68
Risk Analysis—A Tool for Testing 74
Risks 74
Risk Analysis 74
A Testing Process 78
Planning Issues 78
Dimensions of Software Testing 78
Who Performs Testing? 80
Which Pieces Are Tested? 81
When s Testing Performed? 82
How Is Testing Performed? 83
How Much Testing Is Adequate? 84
Roles in the Testing Process 86
Class Tester 86
Integration Tester 87
System Tester 87
Test Manager 87
A Detailed Set of Test Activities 87

Contents W v

Planning Activities 91
Scheduling Testing Activities 91
Estimation @1
A Process for Testing Brickles 93
Document Templates 94
Test Metrics 106

Summary 107

Chapter 4 Testing Analysis and Design Models 109

An Overview 110
Place in the Development Process 115
The Basics of Guided Inspection 116
Evaluation Criteria 118
Organization of the Guided Inspection Activity 120
Basic Roles 120
Individual Inspection 121
Preparing for the Inspection 121
Specifying the Inspection 121
Redlistic Models 121
Selecting Test Cases for the Inspection 123
Creating Test Cases 127
Completing Checklists 128
The Interactive inspection Session 128
Testing Specific Types of Models 131
Requirements Model 131
Analysis Models 138
Design Models 141
Testing Again 151
Testing Models for Additional Qualities 151
Summary 154
Model-Testing Checklist 155
Addendum: A Process Definition for Guided Inspection 157
Steps in the Process 157
Detailed Step Descriptions 157
Roles in the Process 161

vi | Contents

Chapter 5 Class Testing Basics 163

Class Testing 164

Ways to Test a Class 164

Dimensions of Class Testing 166
Constructing Test Cases 168

Adequacy of Test Suites for a Class 179
Constructing o Test Driver 183

Test Driver Requirements 186

Tester Class Design 188
Summary 210

Chapter 6 Testing Interactions 213

Object Interactions 214
Identifying Interactions 215
Specifying Interactions 221
Testing Object Interactions 222
Testing Collection Classes 222
Testing Colloborator Classes 223
The Interaction between Testing and Design
Approach 224
Sampling Test Cases 225
Orthogonal Array Testing 228
Adequacy Criteria for OATS 234
Another Example 235
Another Application of OATS 237
Testing Off-the-Shelf Components 237
A Case Study in Component Acceptance Testing 238
Protocol Testing 241
Test Patterns 242
Listener Test Pattern 242
Specific Example 244
Testing Exceptions 245
Testing Interactions at the System Level 247
Summary 248

Contents] Vii

Chapter 7 Testing Class Hierarchies 249

Inheritance in Object-Oriented Development 250
Subclass Test Requirements 250

Refinement Possibilities 251

Hierarchical, Incremental Testing 253
Organizing Testing Software 262
Testing Abstract Classes 263
Summary 266

Chapter 8 Testing Distributed Objects 269

Basic Concepts 270
Computational Models 271
Concurrent 271
Parallel 271
Networked 272
Distributed 272
Basic Differences 272
Nondeterminism 272
Additional Infrastructure 273
Partial Failures 273
Time-Outs 274
Dynamic Nature of the Structure 274
Threads 274
Synchronization 274
Path Testing in Distributed Systems 275
Thread Models 278
Life-Cycle Testing 280
Models of Distribution 281
Basic Client/Server Model 281
Standard Models of Distribution 282
Comparisons and Implications 284
A Generic Distributed-Component Model 284
Basic Architecture 285
Local and Remote Interfaces 287
Specifying Distributed Objects 287
Interface Definition Language 287
Traditional Pre- and Postconditions and Invariants 288

viii J] Contents

Chapter 9

Temporal Logic 288
Temporal Test Patterns 291
Eventually(p) 291
Unfil{p,q) 292
Always(p) 293
A Test Environment 293
Class Testing 293
Interaction Testing 295
Test Cases 295
Model-specific Tests 296
Testing Every Assumption 297
Infrastructure Tests 300
Logic-Specific Test Cases 301
The Ultimate Distributed System—The Internet 303
Web Servers 304
Life-Cycle Testing of Internet Applications 305
What Hoven't We Said? 306
Summary 306

Testing Systems 309

Defining the System Test Plan 311
Features Tested and Not Tested 311
Test Suspension Criteria and Resumption
Requirements 311

Complementary Strategies for Selecting Test Cases 313
Use Profile 313
OoDC 314

Use Cases as Sources of Test Cases 315
Constructing Use Profiles 316
Using Scenarios to Construct Test Cases 317
The Expected Results Section of a Test Case 319
Brickles 320

Testing Incremental Projects 323
Llegacy Projects 323

Testing Multiple Representations 324

What Needs to Be Tested? 326
Testing against Functional Requirements 326
Testing for Qualitative System Attributes 326
Testing the System Deployment 327

Contents] ix

Testing after Deployment 328
Testing Environment Interactions 328
Test System Security 330
Types of Testing 331
Stress Testing 331
Life-Cycle Testing 331
Performance Testing 333
Testing Different Types of Systems 334
Reactive Systems 334
Embedded Systems 335
Multitiered Systems 336
Distributed Systems 338
Measuring Test Coverage 338
What s to Be Covered? 338
When s Coverage Measured? 339
When Is Coverage Used? 339
ODC—Defect Impacts 339
More Examples 341
Summary 341

Chapter 10 Components, Frameworks, and
Product Lines 343

Component Models 344
Enterprise JavaBeans Component Model 345
Testing Components versus Objects 346
Component Test Processes 348
Test Cases Based on Interfaces 349
Case Study—A GameBoard Component 351
Frameworks 359
Basic Issves 359
Framework Testing Processes 360
inspecting a Framework 360
Structuring Test Cases to Support a Framework 361
Product Lines 362
Testing at the Organizational Management Level 362
Testing at the Technical Management Level 363
Testing at the Software Engineering Level 363
Testing in a Product Line Project 363
Future 364
Summary 364

X | Contents

Chapter 11 Conclusion 367

Suggestions 367
Organization and Process 367
Data 368
Standards 368
Software Infrastructure 370
Techniques 370
Risks 371

Brickles 371

Finally 373

Bibliography 375

index 381

Introduction

Testing software well has always been challenging, but the process is fairly well
understood. Some combination of unit testing, integration testing, system test-
ing, regression testing, and acceptance testing will help to deliver usable
systems.

We wanted to write this book because most
people seem to believe that testing object-ori-
ented software is not much different from testing :
procedural software. While many of the general | . :
approaches and techniques for testing are the
same or can be adapted from traditional testing Chapter
approaches and techniques, our experience and
our research has demonstrated that some things
are different and present new challenges. At the

same time, well-designed object-oriented soft-
ware developed as part of an incremental process provides opportunities for
improvements over traditional testing processes.

Object-oriented programming language features of inheritance and polymor-
phism present new technical challenges to testers. We describe solutions for
many of these challenges. In this book, we describe processes and techniques
for testing object-oriented software effectively during all phases of a develop-
ment effort. Our approach to testing software is quite comprehensive and one
that we believe software development organizations should undertake. At the
same time, we realize that resources available for testing are limited and that
there are many effective ways to develop software, so we think it is reasonable
to pick and choose among the techniques we present in this book.

The adoption of object-oriented technologies brings changes not only in the
programming languages we use but in most aspects of software development.

2 [Chapter 1: Introduction

We use incremental development processes, refocus and use new notations for
analysis and design, and utilize new programming language features. The
changes promise to make software more maintainable, reusable, flexible, and
so on. We have written this book because changes in the way we develop soft-
ware produces changes in the way we test software, from both managerial and
technical perspectives. The following changes provide opportunities for
improving the testing process:

@ We have an opportunity to change attitudes toward testing. In many envi-
ronments, managers and developers view testing as a necessary evil.
Testing that needs to be done by the developers themselves interrupts
code production. Reviews, code inspections, and writing unit test driv-
ers take time and money. Testing processes imposed on the developers
for the most part just get in the way of coding. However, if we can make
everyone appreciate that testing contributes to developing the right soft-
ware from the start, and that it can actually be used to measure progress
and keep development on track, then we can build even better software.

B We have an opportunity to change where testing fits into a development
process. Almost everyone recognizes that the sooner problems are
found, the cheaper they are to fix. Unit testing and integration testing
uncover problems, but don’t usually start until coding has started. System
testing is typically done near the end of a development effort or perhaps
at certain planned milestones. System testing is treated as a way to see
how well the developers did in meeting requirements. Of course, this is a
wrong approach. Decisions about how much testing is adequate, when it
should be performed, and who should do it should be made only in the
context of a well-considered testing strategy that works with the
project’s software development process. We will show how testing activ-
ities can begin early. We will show how testing and development activi-
ties can be intertwined and how each can contribute to a successful
outcome of the other.

B We have an opportunity to use new technology to do the testing. Just as
object-oriented technologies have benefits for production software, they
also can realize benefits in test software. We will show how you can test
object-oriented analysis and design models, and how you can use object-
oriented programming techniques to develop unit test drivers and
reduce the coding necessary to test software components.

Who Should Read This Book?

We have written this book for

B Programmers who already work in testing software, but want to know
more about testing object-oriented software.

