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Preface

Testing software is a very important and challenging activity. This is a book for
people who test software during its development. Our focus is on object-
oriented and component-based software, but you can apply many of the tech-
niques discussed in this book regardless of the development paradigm. We
assume our reader is familiar with testing procedural software—that is, soft-
ware written in the procedural paradigm using languages such as C, Ada,
Fortran, or COBOL. We also assume our reader is familiar and somewhat expe-
rienced in developing software using object-oriented and component-based
technologies. Our focus is on describing what to test in object-oriented devel-
opment efforts as well as on describing techniques for bow to test object-
oriented software, and how testing software built with these newer technolo-
gies differs from testing procedural software.

What is software testing? To us, testing is the evaluation of the work prod-
ucts created during a software development effort. This is more general than
just checking part or all of a software system to see if it meets its specifications.
Testing software is a difficult process, in general, and sufficient resources are
seldom available for testing. From our standpoint, testing is done throughout a
development effort and is not just an activity tacked on at the end of a develop-
ment phase to see how well the developers did. We see testing as part of the
process that puts quality into a software system.As a result, we address the test-
ing of all development products (models) even before any code is written.

We do not necessarily belicve that you will apply everything we describe in
this book.There are seldom enough resources available to a development effort
to do all the levels and kinds of testing we would like. We hope you will find a
number of approaches and techniques that will prove useful to and affordable
for your project.
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B Preface

In this book we describe a set of testing techniques.All of the techniques we
describe have been applied in practice. Many of these techniques have been
used in a wide variety of industries and on projects of vastly different sizes. In
Chapter 3, we will consider the impact of some of these variables on the types
of testing that are routinely performed.

To describe these techniques, we rely in many cases on one or more exam-
ples to illustrate their application. We hope from these examples and from our
explanations that you can apply the same techniques to your project software
in a straightforward manner. The complete code for these examples, test
code, and other resources can be obtained from bttp.//cseng.aw.com/book/
0.3828.0201325640.00.btml.

In order to make this book as useful as possible, we will provide two major
organizational threads. The physical layout of the book will follow the usual
sequence of events as they happen on a project. Model testing will be
addressed earlier than component or code testing, for example. We will also
include a set of questions that a tester might ask when he or she is faced with
specific testing tasks on a project. This testing FAQ will be tied into the main
body of the text with citations.

We have included alternative techniques and ways of adapting techniques
for varying the amount of testing. Testing life-critical or mission-critical soft-
ware requires more effort than testing an arcade game. The summary sections
of each chapter should make these choices clear.

This book is the result of many years of research, teaching, and consulting
both in the university and in companies. We would like to thank the sponsors
of our research, including COMSOFT, IBM, and AT&T for their support of our
academic research. Thanks to the students who assisted in the research and
those who sat through many hours of class and provided valuable feedback on
early versions of the text. The consultants working for Korson-McGregor, for-
merly Software Architects, made many suggestions and worked with early ver-
sions of the techniques while still satisfying client needs. The employees of
numerous consulting clients helped us perfect the techniques by providing real
problems to be solved and valuable feedback. A special thanks to Melissa L.
Russ (formerly Major) who helped teach several tutorials and made her usual
insightful comments to improve the material.

Most of all, we wish to thank our families for enduring our mental and phys-
ical absences and for the necessary time to produce this work: Gayle and Mary
Frances McGregor; Susan,Aaron, Perry,and Nolan Sykes.

JDM
DAS
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Introduction

Testing software well has always been challenging, but the process is fairly well
understood. Some combination of unit testing, integration testing, system test-
ing, regression testing, and acceptance testing will help to deliver usable
systems.

We wanted to write this book because most
people seem to believe that testing object-ori-
ented software is not much different from testing :
procedural software. While many of the general | . :
approaches and techniques for testing are the
same or can be adapted from traditional testing Chapter
approaches and techniques, our experience and
our research has demonstrated that some things
are different and present new challenges. At the

same time, well-designed object-oriented soft-
ware developed as part of an incremental process provides opportunities for
improvements over traditional testing processes.

Object-oriented programming language features of inheritance and polymor-
phism present new technical challenges to testers. We describe solutions for
many of these challenges. In this book, we describe processes and techniques
for testing object-oriented software effectively during all phases of a develop-
ment effort. Our approach to testing software is quite comprehensive and one
that we believe software development organizations should undertake. At the
same time, we realize that resources available for testing are limited and that
there are many effective ways to develop software, so we think it is reasonable
to pick and choose among the techniques we present in this book.

The adoption of object-oriented technologies brings changes not only in the
programming languages we use but in most aspects of software development.




2 [ Chapter 1: Introduction

We use incremental development processes, refocus and use new notations for
analysis and design, and utilize new programming language features. The
changes promise to make software more maintainable, reusable, flexible, and
so on. We have written this book because changes in the way we develop soft-
ware produces changes in the way we test software, from both managerial and
technical perspectives. The following changes provide opportunities for
improving the testing process:

@ We have an opportunity to change attitudes toward testing. In many envi-
ronments, managers and developers view testing as a necessary evil.
Testing that needs to be done by the developers themselves interrupts
code production. Reviews, code inspections, and writing unit test driv-
ers take time and money. Testing processes imposed on the developers
for the most part just get in the way of coding. However, if we can make
everyone appreciate that testing contributes to developing the right soft-
ware from the start, and that it can actually be used to measure progress
and keep development on track, then we can build even better software.

B We have an opportunity to change where testing fits into a development
process. Almost everyone recognizes that the sooner problems are
found, the cheaper they are to fix. Unit testing and integration testing
uncover problems, but don’t usually start until coding has started. System
testing is typically done near the end of a development effort or perhaps
at certain planned milestones. System testing is treated as a way to see
how well the developers did in meeting requirements. Of course, this is a
wrong approach. Decisions about how much testing is adequate, when it
should be performed, and who should do it should be made only in the
context of a well-considered testing strategy that works with the
project’s software development process. We will show how testing activ-
ities can begin early. We will show how testing and development activi-
ties can be intertwined and how each can contribute to a successful
outcome of the other.

B We have an opportunity to use new technology to do the testing. Just as
object-oriented technologies have benefits for production software, they
also can realize benefits in test software. We will show how you can test
object-oriented analysis and design models, and how you can use object-
oriented programming techniques to develop unit test drivers and
reduce the coding necessary to test software components.

Who Should Read This Book?

We have written this book for

B Programmers who already work in testing software, but want to know
more about testing object-oriented software.



