/S OB S BN OB 2B M R 5

e R 4
— IR A KA

Operating Systems
Concurrent and Distributed Software Design

Jean Bacon
*]
[Tim Harris

x a2 ~ 3
| §F I &t
‘ Publishing House of Electronics Industry
—ae=a http://www.phei.com.cn

EsMTENHEEH RS

BRIERG
F R 59 HRR R

(AXHR)

Operating Systems

Concurrent and Distributed Software Design

Jean Bacon

[%] FF

Tim Harris

%3 IH & sAL
Publishing House of Electronics Industry
it - BEUJING

HEEN

F A AL AR E R SRR T RO MR & BREISE A MO AR SHS I 1, R
UL EE S B THRAMETRRLE, B X RGO S LR 2RI AR Aise #1052

SRIA0E, HHENET, B OTRHE S FERLAE CBAERRE OB SRR, gy
Bt RIS AERRM AR . B S ER S VUM o R R, LU oA SRR 5 TRk
%t UNIX, Linux, Windows 2000/NT #1JVM S SR BUCERE RS0 T 7 BARHET. JF0He 1 Web Il 55 . shinlfd 1
HEACPRER X VERYE R AR - N EERE, B RV L - R A BN AR,
FEA BB R I EEE S Java 1B F34T, HRA] Java BB 9 40 RIIHBES . AR Rk AVHNURY P S

FBE S AT A BB REIRBE A, USSR R SF R R RSB 1) B IR
G BE RGNS E .

© Pearson Education Limited 2003,

This edition of Operating Systems: Concurrent and Distributed Software Design. ISBN: 0321117891 by Jean Bacon and
Tim Harris is published by arrangement with Pearson Education Limited.

All Rights Reserved.

English language reprint edition published by Publishing House of Electronics Industry. Copyright © 2003,

Licensed for sale in mainland territory of the People’s Republic of China only. excluding Hong Kong,

A R BRI Pearson Education Timited $3 T8 F Tolk HARAE . K400 R & #5151 Vraf . AL
A FBRE R RA A

SO R e ANRFEAMBESE A (NEIEEE . B IR T VL R &) R SR

MU 5 & EPEICE . BT 01-2003-2040
EHEMSKE (CIP) ¥iE

BERG: HE S5 m8ERT = Operating Systems : Concurrent and Distributed Software Design/ (%)
HAR (Bacon,J.) &. —dbal: BF 10oLHIREE, 2003.6

(ESMTEYBEEM 25

ISBN 7-5053-8788-X

.8 N8 W29 EERES - 84 - £ 1V. TP3164
o & h AR B 450 CIPBEEZ 7 (2003) 5£044231 5

WiTmE. FEE

B R . JLs RABAEDR)

BEEFT: BFLIAEMAE hup//www.phei.com.cn
EHRBRR T ER 17358 Big: 100036

% 8 BHEFEHE

F & 787 x 980 1/16 Bl%k: 57 FH. 1277 TF

R OW: 2003F6AF I 200346 A% 1 WENKI

E tr: 79.00T

AMELFITEHBRHGBY, whHRRFMR, FEAMERL AR, ZHEE&K, FHRAAAITHBE B4
wiE: (010) 68279077

H AR i BA

2RI S B 0T EREERZSF IS K BMNEENR, tRE Rl TR & e i
B TER A WTO G4 K, 85— 3GE b EPRESE 09— JUIT AA BAARUEE IR 1 S 8017 1)
HESZ ., FEAFMEARTEAANRE SEE, RIRE RS EBR R Frod G BN £

i, FERESSHERIRERRESEAEEF RE TENEREY, AR
i R BRCIEEN A R0 R SRR IEAE L6 (5 B RHEL ARURAE i FH E SMIL & 806 B 7 it
B, UMEREAE TS R EERR K

- Dl RAZER G ESMU BRI MER, BERm T M IR 8 &
FI” N, IXEBMBEEREET . SEE . BKE, REAR G WIRBREM, G4 ok R
b, VENARIBE R . ARE W . ARRREITAEXTEA TR, T KIGAE ol B a3k 268011 4l
TR KSR RIFER T M AER S SEE . BEARL TTREVURS A T A,
Wy B S EBAL . RRIET . BIRERSSEE .)4 TE%, Het, RIS il ¢ -

UL F S SCFRRER , A< BH IR AR A A SCIR RSO BAGJFIN , % B 03 1) 3 R R A1 5 SUD RS S
WL RH PRRRAS

TERIB LR L, FATRERIEBEE SN E A HARA R H R B, W Pearson Education 15| 84
FILMREEI | ER S - A/REH B AUER | IRE TR L EB I ARAL . SRR F AR S 19875 Sk W
WEAEARERA MR B FE , WEREHIET - FHR(Douglas E. Comer) BUHE - HTHLAN William
Stallings). MHE - B¥FX (Harvey M. Deitel). JOFIBT - i3 5 (Uyless Black) %

D BRAOR LR B ANBRR T B, RAT29W TR CF | JUm K LR s -
PR, R RS . BEIRE . BITLRSE . BRE LW RE | AR R WLl s
PR E AR BBCERL T R¥ S EF BRI EEME THIT S5 1T AR5 B 10 R B
RARL 1A (A TP A R REBM B TEIR ML, SERR T IL 8 n £ 8 M
-1 i

(R RSN BA R ERE . BHERME I TR h, HREBM TR, B KLty v,
L BT BT AT RMSIE; SRR GRIBET JRARIF VX O SPHERR . BRI GEiET 1M X
P LM R B ER, RAVET SEBKEM T REELE A, & 817 M,

EeAh, FATRK S EIE B BB A RS, R — B B S RFP0R, A A0 b B2 Z i
RUHF) A, RITHSEIR S & BRBOTMETECR, R K4S |3 E 20 =AME 5 Hkt
MEZ4, HEREIENBFEF R R SRS R RIEBCE S .

W Ol

*

1

p=i

ZESL]

i N(SPES

EI

9K B

EMHMERS

LR KFEHE
H EREBEBE L
ERKRF RS IEFR I
R ARFERS TR FRTK

FEARKFERERREK . #R

HERFTENRF SRR R B
E s BAL IR & Sl 5 AP ENNE

HERFETBIRESHARRHR
HET BRI S2EE L LB R & EAT

T EANRMBRER TR B
ERETARTT PO EE, F LM

LEGERF BN S TRASR
ERAHHEEASCEE

L EERBEER RO L. ERREHE
PEARHASFFESE, BT E RSl

BB EROR R R BB .
AWM AV EMRER R IR A2 A ER

TR IR AR

~ Preface

This book has its origins in Jean Bacon's Concurrent Systems editions 1
and 2. Edition 3 was created recently, specifically for the Open University
of the UK who have used the book for their course ‘Software Systems
and their Development’ (M301) since 1999. That course does not require
a detailed treatment of operating systems’ design with case studies and
those parts of Concurrent Systems were removed in its third edition.
This book extends the treatment of operating systems, making it even
more appropriate for the standard Operating Systems curriculum. Edi-
tions 1 and 2 of Concurrent Systems established the fundamental principles
which are necessary for understanding software systems. Features of
Operating Systems: Concurrent and Distributed Software Design are:

+ Java is used throughout to illustrate object-orientation concepts,
concurrent algorithms and distributed programming.

+ The coverage of operating systems’ design and case studies is
updated and extended.

+ There is a chapter on security which complements the coverage of
distributed systems.

* The case studies in Part IV have separated the treatment of classical
UNIX from that of current versions and include a new chapter on
extensible operating systems. ‘'The World Wide Web’ and a rewrite of
‘Middleware’ represent recent developments in distributed systems.

The philosophy and approach, focusing on system design issues, remain
unchanged and have been applied to the systems that have evolved
since 1993.

The aim of this book is to equip students with an integrated view of
modern software systems. Modularity, concurrency and distribution are
the unifying themes, both within the design of operating systems and in
the systems supported by operating systems. The book takes a systems
approach rather than a programming language approach, since concurrent

<21

222 .

and distributed programming are firmly rooted in system design. The lan-
guage is an implementation tool for the system designer and programming
languages are covered throughout the bock from this perspective.

The structure of the book is:

 Introduction, in which types of real-world system are described and
requirements for building computerized systems established.

» Partl, in which the relationship between technology and system
design is explored. The basic operating system functions are
described in detail and the abstraction, and implementation, of a
system as a community of concurrent processes is established.

The fundamental properties of distributed systems are set down
and the provision of security in such systems is discussed.

+ Part ll, in which the focus is concurrency control in operating systems
and application-level systems, and inter-process communication (IPC)
is explored in the context of system design. To partition the material,
the theme of this part concentrates on how to achieve atomicity
of a method invocation on an object in main memory. We conclude
by considering the cases when the object invoked is persistent or
remote; distributed IPC is covered in detail.

 Partlll, in which the theme is concurrent composite operations or
transactions. The traditional application area for these ideas is
database systems but we illustrate the general applicability of
these systems concepts.

+ Part IV, in which some case studies are considered from the
perspective developed throughout the book.

Computer systems curriculum

Because distributed systems have come into widespread use comparatively
recently, most curricula include them at final-year undergraduate or post-
graduate level. Distributed systems are now commonplace and a student
is more likely to be using one than a centralized time-sharing system.
It is somewhat artificial to cover the functions of a shared, centralized
operating system in great detail in a first course, particularly when the rate
of development of technology makes it essential constantiy to re-evaluate
traditional approaches and algorithms.

In general, there is a tendency for closely related specialisms to diverge,
even at undergraduate level. An overview of system components and their
relationships is desirable from an early stage:

+ Operating systems include communications handling.

* Language runtime systems work closely with (and are constrained by)
operating systems.

* Real-time systems need specially tailored operating systems.

* Dedicated communications-handling computers need specially
tailored operating systems.

+ Database management systems run on operating systems and need
concurrency and file handling with special guarantees.

» Concurrent programs run on operating systems.

* Operating systems (and their components) are concurrent programs.

« Window systems require concurrent processes.

» Many system components employ databases.

- Distributed systems employ distributed databases.

« Distributed databases need communications.

» Distributed operating systems need transactions.

Operating Systems: Concurrent and Distributed Software Design achieves
this integration by setting up a common framework of modular structure
(a simple object model is used throughout), concurrency control and
distribution.

We have used this approach in the Computer Science curriculum at
Cambridge since 1988, when a new three-year undergraduate degree
programme started. A concurrent systems course, in the second year
of a three-year degree course, is a prerequisite for further study in dis-
tributed operating systems, communications and networks, theory of
concurrency, and various case studies and projects. Figure P.1 suggests
an order of presentation of systems material. Courses in the general

area of real-time, embedded control systems would also follow naturally
from this course.

Real-time
systems
A
b
Hardware and «| Data communications
architecture "1 and computer networks
A
Introduction to > Operating Large-scale distributed
system software systems systems
¢ h
Programming > Concurrent Advanced
languages programming CS design
L Figure P.1
Operating systems
Database: Database in distributed,
data modelling implementation concurrent software
in the curriculum.

«23 .

.24 -

in Curriculum 91 for Computing, published by the IEEE Computer
Society and the ACM (see Denning et al., 1989; Tucker 1991) the general
topic ‘Operating Systems’ includes distributed operating systems and
communications. Curriculum 91 identifies the three major paradigms of
the discipline as: theory, which is rooted in mathematics; abstraction
{modelling), which is rooted in experimental scientific method; and
design, which is rooted in engineering. Theory deals with the underlying
mathematics of each subarea of computing. Abstraction allows us to
model large, complex systems in order to comprehend their structure
and behaviour and carry out experiments on them. Design deals with
the process of implementing a system to meet a specification. The
approach taken here embodies abstraction and design and establishes
the basis for theory.

In December 2001 IEEE-CS/ACM published, in their Computing
Curricula 2001, a curriculum for Computer Science. Curricula for Com-
puter Engineering, Software Engineering and Information Systems are to
follow. They argue that, since the subject has grown extensively and
rapidly in the past decade, a minimal core curriculum should be defined,
allowing a variety of extensions. The core topics for the 18 minimum core
hours in Operating Systems are: overview of operating systems (2), oper-
ating systems principles (2), concurrency (6), scheduling and dispatch (3)
and memory management (5). The core topics for the 15 minimum core
hours of Net-Centric Computing are introduction (2), communication and
networking (7), network security (3), and the web as an example of client-
server computing (3}. The ten-hour minimal core in Information Manage-
ment has transaction processing as an early extension. ‘Objects First’ is
one of three proposed models (with ‘Imperative First’ and ‘Functional
First’) for introducing programming. The systems view presented here
includes, integrates and extends this core coverage in systems topics.

Audience

It is assumed that the reader will come to this material with some know-
ledge and experience of systems and languages. First-year under-
graduate courses on programming and systems software are appropriate
prerequisites. It is suitable as a text to be read in parallel with specialized
courses in communications and databases. It is a suitabie starting point
for graduate students in the systems area, providing integrating and
summarizing study for the current wide variety of undergraduate degrees.
Practitioners in systems design including systems programming will
find the fundamentals of the subject here. Graduate students who are

researching the theory of concurrency wili find the practical basis for their
subject here.

An outline of the contents

Chapter 1 describes a number of types of system and draws out require-
ments for supporting them. Software systems can exploit a wide range
of hardware topologies and architectures. Although this area is not

addressed in great detail their characteristics are noted for reference
throughout the book.

Chapters 2 through 8 form Part |. System design and implementation
require software to be engineered. Software engineering, which involves
the specification, design, implementation, maintenance and evolution
of software systems, has merited many bogcks in its own right. Here we
briefly establish a context of modular software structure, establishing an
object model to be used throughout,

Moduiar system structure is introduced in Chapter 2 and the modular
structure of operating systems is set up. The idea that a minimal kernel
or ‘microkernel’ is an appropriate basis for high-performance specialized
services is introduced here. The concepts of process and protocol to
achieve the dynamic execution of software are also introduced.

in Chapter 3 device handling and communications handling are covered.
These topics are treated together to highlight the similarities (between
communications and other devices) and differences (communications
software is larger and more complex than device-handling software). The
communications-handling subsystem of an operating system is itself a
concurrent (sub)system, in that at a given time it may be handling several
streams of input coming in from various sources across the network as
well as requests for network communication from local clients.

Chapter 4 gives the detailed concrete basis for the process abstraction
that is provided by operating systems. Once the process abstraction is
created as one operating system function we can show how processes are
used to achieve the dynamic execution of the rest of the system. Operating
system processes may be used within operating system modules, while
application-level processes may be located within application modules.
There are several design options which are discussed throughout the
book. Later sections are concerned with language systems and a particular
concern is the support for concurrency. The relation between operating
system and language system processes is discussed in detail.

Chapter 5 covers memory management. The address space of a process
is an important concept, as also are mechanisms for sharing part of it.

Chapter & gives the basic concepts of filing systems. File system
implementations involve data structures both in main memory and
in persistent memory on disk. Both the memory management and file
management subsystems of operating systems are concurrent systems

26

in that they may have in progress both requests from clients and demands
for service from the hardware.

Chapter 7 introduces distributed software systems. We focus on their
fundamental properties then cover time and naming in some detail.
Subsequent chapters can then consider distribution of the various func-
tions being studied.

Chapter 8 is concerned with security in centralized and distributed
systems.

Part | is concerned with technology and its impact on system design.
Knowledge of the material presented here is necessary for a thorough
understanding of software systems. Care must be taken, when working
at the language or theoretical modelling levels, that the assumptions
made can be justified for the operating system and hardware that will be
used to implement a system.

Part Il focuses on a major system design requirement: concurrency
control. It explains the mechanisms for ensuring that a given concurrent
process can execute without interference from any other, bearing in
mind that processes may be cooperating with other processes (and need
to synchronize with them) or competing with other processes to acquire
some resource.

Chapters 9 to 16 comprise Part i. In Part Il we temporarily ignore the
issues of composite operations and the need to access multiple resources
to carry out some task and confine the discussion to a single method
invocation on an object in main memory. The notion of a single abstract
operation is informal and closely related to the modular structuring of
systems. A process can, in general, read or write a single word of memory
without fear of interference from any other process. Such a read or write
is indivisible. In practice, a programming language variable or a useful data
abstraction, such as an array, list or record, cannot be read or written
atomically. It is the access to such shared abstractions by concurrent pro-
cesses that is the concern of Part Il. Chapters 9 to 14 are mostly concerned
with ‘load and go’ systems that run in a single or distributed main memory.
Chapters 15 and 16 start to consider the effect of failures in system com-
ponents and process interactions which involve persistent memory.

Chapter 9 discusses the major division between processes which share
memory, running in a common address space, and those which do not.
Examples are given, showing the need for both types of structure.

Chapter 10 is concerned with the lowest level of support for process
interactions. The architecture of the computer and the system is relevant
here. It is important to know whether any kind of composite read-modify—
write instruction is available and whether the system architecture con-
tains shared-memory multiprocessors or only uniprocessors. Concurrency

control without hardware support is discussed and semaphores are
introduced.

Chapter 11 builds on the lowest level to create algorithms to solve
classic systems problems. A discussion of the difficulty of writing correct
semaphore programs leads on to high-level language support for con-
currency in the next chapter.

Chapter 12 looks at language primitives that have been introduced
into high-level concurrent programming languages where the underly-
ing assumption is that processes execute in a shared address space. The
support for concurrent programming in Java is described here.

Chapter 13 compares inter-process communication (IPC) mechanisms
within systems where shared memory is available and where it is not. In
both cases processes need to access common information and synchronize
their activities.

Chapter 14 covers IPC for processes which inhabit separate address
spaces. Pipes and message passing are discussed. The material here
is highly relevant to distributed IPC, but the integration of IPC and com-
munications services in left for Chapter 16.

Chapter 15 introduces the possibility that a system might crash at
any time and outlines mechanisms that could be used to provide crash
resilience. An initial discussion of operations which involve persistent
data is also given.

Chapter 16 focuses on IPC in distributed systems, taking account of
their fundamental characteristics, introduced in Chapter 7. We see how
an operation at one node of a distributed system can be invoked from
another node using a remote procedure call protocol. Node crashes and
restarts and network failures are considered. Although distributed IPC
is the main emphasis of the chapter, it includes a general discussion of
naming, location and the binding of names to locations in distributed
systems. Socket programming in Java and Java’s remote method invoca-
tion (RMI) are given as practical examples.

Chapters 17 through 23 comprise Part lll where the discussion is broadened
to composite operations (transactions) and the concurrent execution
of their component operations. The objects concerned may be in main
memory, in persistent memory and/or distributed.

Chapter 17 introduces the problems and defines the context for this
study. Composite operations may span distributed systems and involve
persistent memory.

Chapter 18 discusses the desirahility of dynamic resource allocation
and the consequent possibility of system deadlock. An introduction to
resource allocation and management is given, including algorithms for
deadlock detection and avoidance.

.27

£ 28 .

Chapter 19 discusses composite operation execution in the presence
of concurrency and crashes and builds up a definition of the fundamen-
tal properties of transactions. A model based on abstract data objects is
used.

Chapter 20 discusses concurrency control for transactions. Two-phase
locking, time-stamp ordering and optimistic concurrency control are
described and compared.

Chapter 21 is mainly concerned with crash recovery, although the
ability to abort transactions for concurrency control purposes is a related
problem. A specific implementation is given.

Chapter 22 extends the object model for transactions in distributed
systems and reconsiders the methods of implementing concurrency
control. The problem of distributed atomic commitment is discussed and
a two-phase commit protocol is given as an example. A validation pro-
tocol for optimistic concurrency control is also given.

Chapter 23 covers algorithms which may be used by distributed
computations.

Chapters 24 through 30 comprise Part IV, in which case studies are pre-
sented. Greater depth is possible here than in the examples used earlier.
An aim is to show that the approach developed throughout the book
helps the reader to comprehend large, complex systems.

Chapter 24 describes the basic UNIX seventh edition design, ‘classical
UNIX'. The design is evaluated and the process management and inter-
process communication facilities, in particular, are criticized.

Chapter 25 shows how these criticisms have been addressed in
LINUX, Solaris and contemporary UNIX.

Chapter 26, on extensible operating systems, explores more radical
operating system structures, including microkernels.

Chapter 27 is a case study on Microsoft's Windows 2000 which has an
object-oriented design. PC hardware is now able to provide protection
suitable for supporting multiple applications and users and sufficient
power for large-scale applications.

Chapter 28 covers web programming, a subject which was invented
after edition 1 of Concurrent Systems was published and which has grown
extensively since edition 2. This style of programming is set to dominate
much of distributed systems design and development.

Chapter 29 covers the broad range of middlewares, contrasting those
based on synchronous object invocation and those based on asynchron-
ous message passing. The former include Java and OMG’'s OMA and
CORBA and the latter IBM’s MQseries and the TIBCO TIB/Rendezvous.
Microsoft's DCOM and .NET are also outlined.

Chapter 30 first discusses how transaction processing monitors are
implemented in terms of processes, IPC and communications. Some
examples of transaction processing systems in the area of electronic
funds transfer are then given, for example, an international automatic
teller machine (ATM) network.

The appendix presents a historical and functional evolution of software
systems in a technological and commercial context. How to achieve con-

currency control without any hardware support is also included, together
with exercises.

Order of presentation

Figure P.2 indicates dependencies in the material and shows how
the chapters might be selected for courses on operating systems and
distributed systems and for supplementary material on concurrent and
systems programming or databases.

The material in Part |l could be taken in a different order. Although there
is a flow of argument through the chapters as written, there is no inherent
reason why shared-memory IPC has to come before that with no shared
memory, although distribution follows naturally from the latter.

A concurrent programming course could supplement Part | and Part Ii
with full details of a language to be used for project work; Java would be
the natural choice. Chapters 17 and 18 from Part |l should also be included.

A course on concurrency control in database systems would use Part Iil,

but earlier chapters which cover operating system support for databases
provide an excellent background.

Further study

The book naturally leads on to advanced systems courses: specialized
operating systems, real-time embedded control systems, large-scale
distributed systems, distributed databases. The conceptual framework
of concurrency control, distribution, naming, location, placement, pro-

tection, authentication and encryption are set up, ready for exploitation
in systems design.

Objective

The main emphasis of the book is system design (with the operating
system as a major component), how to comprehend existing systems
and how to design new systems. One can’t write certain kinds of system
in certain languages above certain operating systems. This book aims to
show the reader why. Computers are marketed optimistically. Names

.2().

[1 Systems requirements @

[2 System structure and dynamic execunonﬁ

L3 H/W interface & commsﬂ
Part|
System design:

Processes@ Ii Memorya LG FI|€;E
Technology and !

=]

ANANN

P
Lg System structure PN

[1 0& 11 Low-level synchronization @

Partil
Concurrency] %2 i
control in 12 Shared-memory IPC Z3 L13 IPC and system structure% uci IPC without shared memor\Z@

main memory

L15 Crashes and persistence é

16 Distributed (PC [N

I_] 7 Composite operations @
[18 Deadlocks@ L19 Transactiongg

Part 1) LZO Concurrency contr@

Transactions .
21 Recovery B2 Distributed transactions@

LZB Distributed computationsE

222

2SI

Part IV 25 LINUX, Soleris & contemporary UNIX
Case studies

[26 Extensible system_s:a

27 Windows 2000 4

‘ - (28 The World Wide Web
Operating systems and distributed systems

Database . 29 Middleware ?
Concurrent programming 4

[30 Transaction processing systems@

ANNAN

Course key

Figure P.2 such as ‘real-time operating system’ are used with little concern for
Presentation of the

material their meaning. In order to survive an encounter with a salesperson one
must know exactly what one wants and must know the pitfalls to look

out for in the systems one is offered. | hope the book will help systems
«30 -

designers to select the right hardware and software to satisfy their
requirements.

Instructor’s guide

A web-browsable instructor’'s guide was developed for the second
edition of Concurrent Systems, containing the following:

» Curriculum design. An outline of parts of the IEEE-CS/ACM
Computing Curricula 1991 is given. Uses of Concurrent Systems in
the curriculum are discussed.

» Points to emphasize and teaching hints. For each chapter, key points,
potential difficulties and suggested approaches to teaching the
material are given.

- Solutions to exercises and some additional exercises. The solutions

include examples of how the various designs that are discussed have
been used in practice.

Extensions for this book are underway. The guide is available from
www.booksites.net/bacon

Contact your Pearson Education or Addison-Wesley sales representative
for a password.

Acknowledgements

We acknowledge the contributions of the Open University team, Robin
Laney, Pete Thomas and Janet van der Linden, who provided input to
Concurrent Systems edition 3, based on using Concurrent Systems for the
OU’s M301 course ‘Software Systems and their Development’. Their input
on concurrent and distributed programming in Java and study questions
have been retained. We are also grateful to Cambridge students who
have taken the courses based on Concurrent Systems for feedback, and
to graduate students and colleagues in the systems area for their com-
ments. Thanks are due to those who have used the book in their teach-
ing and were helpful on how it should evolve. We thank Ken Moady for
input on all aspects of the book but especially on the database material.
Thanks to Austin Donnelly for checking the UNIX chapters. Pearson Educa-
tion has provided support, motivation and encouragement throughout.

Jean Bacon and Tim Harris
July 2002

Jean.Bacon@cl.cam.ac.uk
Tim.Harris@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~jmb
http://www.cl.cam.ac.uk/~tIh20

.3(-

.32 .

Trademark notice

The following designations are trademarks or registered trademarks of the
organizations whose names follow in brackets:

ACMS, Alpha, DECintact, DECNET, DECSystem 10, DECthreads, DEQNA,
Firefly, GNS, ULTRIX, VAX and VMS (Digital Equipment Corporation);
ACTIVEX.COM (used by CNET under licence from owner -
ACTIVEX.COM is an independent online service); Amoeba (Vrije
Universiteit); ANSA (ANSA Internet Inc.}; ARM and CHORUS (Acorn
Computers); CORBA (Object Management Group); Courier and X25
(Xerox Corporation); HP-UX (Hewlett-Packard Company); Java,
JavaScript, NFS, SunOS and XDR (Sun Microsystems, Inc.); MC68000
(Motorola); MIPS (Silicon Graphics, Inc.); Netscape Navigator (Netscape
Communications Corporation); Netware (Novell); occam (INMOS Group
of companies); Appletalk, Macintosh, MacOS X and OpenDoc (Apple
Computers); MQSeries, 0S/2, SNA and System 370 {(International
Business Machines Corporation}); Pathway (Tandem); ltanium, Pentium,
8086, 80x86 and 860 (Intel); Rendezvous (TIBCO); REXX (Oracle
Corporation); Seagate Elite 23 and BarracudaATA |V (Seagate
Technology Products); Tina-C (National Semiconductor Corporation);
UNIX (X/Open Company Ltd); ActiveX, COM, DCOM, MS-DOS, .NET,
Visual Basic, Windows 95, Windows 2000, Windows NT and Windows
XP (Microsoft Corporation).

